Web-based Graduate Registration System (WGRS), Saint Ignatius William University

SAINT IGNATIUS WILLIAM UNIVERSITY

Graduate Registration System 
Software Documents

-- Requirements, Designs, Testing Plan
    Team 1 Members:

Chen, Gang        4209613

He, Renwei        4425472

He, Zhongyi       3613356

Lai, Xin          4095197

Shi, Ruisheng     4184297

Tong, Wen         4212843

Wang, Yihua       4175522

Wang, Xianwei     4234227

Yu, Guichun       4184629

Zhang, Lei        4554426

Zhong Weibin      3887898

Zhou, Wenjun      5905346


    Comp 554, Winter, 2001

    
Concordia University 

    Instructed by: Dr. Terry Fancott 

April 24, 2001

11
Software Requirement Definition

1.1
Introduction
1
Preface
1
1.2
Functional Requirements
2
1.2.1
User Characteristics
2
1.2.2
Database Requirements
4
Entities
4
ER Model Diagram
5
Schema Tables
6
1.3
Functional Specifications
9
1.3.1
Public user scenarios
9
1.3.2
Student scenarios
11
1.3.3
Faculty scenarios
15
1.3.4
System monitor scenarios
18
1.3.5
Graduate program director scenarios
20
1.3.6
Administrator scenarios
24
1.4
Non-functional specifications
43
1.4.1
Preface
43
1.4.2
System goal:
43
1.4.3
Verifiable non-functional requirements:
43
1.4.4
Usability requirements:
44
1.4.5
Performance requirements
44
1.4.6
Organizational non-functional requirements
45
1.4.7
External non-functional requirement
45
2 Architecture Design
46
2.1 Design Rationale
46
2.2 System Architecture
47
2.3 Object-oriented Models
48
2.3.1    Module Student
49
2.3.2    Module Faculty
50
2.3.3    Module GPD
51
2.3.4    Module Administrator
52
2.3.5    Module Monitor
53
2.4 System Topology
54
3 Module Interface Specification (MIS)
55
3.1 User interface subsystem
55
3.2 Event Handler Subsystem
55
3.2.1    Five Main Modules
55
3.2.1.1    Module Student
55
3.2.1.2    Module Faculty
57
3.2.1.3    Module GPD
57
3.2.1.4    Module Administrator
59
3.2.1.5    Module Monitor
60
3.2.2 Eight Common Object Modules
60
3.2.2.1    COM Login
60
3.2.2.2
COM Registration
61
3.2.2.3    COM StudentInfo
63
3.2.2.4    COM Schedule
65
3.2.2.5    COM EmployeeInfo
66
3.2.2.6    COM Course
67
3.2.2.7    COM Section
68
3.2.2.8    COM Classroom
69
3.3 Dynamic Model
70
3.3.1 Faculty state diagram
70
4 Internal Module Description (IMD)
71
4.1 Five Main Modules
71
4.1.1 Module Student
71
4.1.2 Module Faculty
73
4.1.3 Module GPD
75
4.1.4 Module Administrator
79
4.1.5  Module Monitor
83
4.2 Eight Common Object Modules
90
4.2.1 COM Login
90
4.2.2 COM Registration
95
4.2.3 COM StudentInfo
104
4.2.4 COM Schedule
110
4.2.5 COM Classroom (Implemented in VC++)
115
4.2.6 COM EmployeeInfo
118
4.2.7 COM Course
119
4.2.8 COM Section
121
5 Testing Report
123
5.1 General Introduction to Testing
123
5.1.1 Objective
123
5.1.2 System Description
123
5.1.3 Test Methodology and Scope
124
5.1.4 Testing Process
124
5.1.5 Test Activities in Software Process
125
5.1.6 Testing Schedule
126
5.2 Testing Requirements
126
5.2.1 Functionality
127
5.2.2 GUI & Usability
128
5.2.3 Performance
128
5.2.4 Stress Testing
128
5.2.5 Configuration
128
5.3 Testing Strategy
129
5.3.1 Static Testing
129
5.3.1.1    System requirements validation
129
5.3.1.2    Design verification:
129
5.3.1.3    Coding Inspection
130
5.3.2 Unit Testing
130
5.3.2.1    Unit Static Testing
131
5.3.2.2    Unit Dynamic Testing
131
5.3.3 Integration Testing
131
5.3.4 System Testing
131
5.3.4.1    Functional Testing
132
5.3.4.2    GUI and Usability Testing
132
5.3.4.3    Performance Testing
132
5.3.4.4    Stress Testing
133
5.3.4.5    Configuration Testing
133
5.4 Test Cases
133
5.4.1 Login Component Test
133
5.4.2 Student Module Test
135
5.4.3 Faculty Module Test
137
5.4.4 GPD Module Test
139
5.4.5 Administrator Module Test
140
5.4.6 Monitor Module Test
145
6 Glossary
148

7 References___________________________________________________________154

1 Software Requirement Definition

1.1 Introduction

Preface

Saint Ignatius Williams University’s Web based Graduate Registration System is designed to manage all aspects of registration of students in courses. The system is accessible, with differing privilege levels, to students, faculty, program managers, and the registrar's office.

The system involves a number of interdependent tasks, some of which relate to students registering for courses, and some which involve the management and delivery of the courses. 

The integrated system will have distinct interface windows for each task. The following interdependent tasks will be performed by the system:

Registration

Students may register for courses on the web. They may call up lists of core courses and electives for their academic program, and select them for the term they are registering for. The system will check that whether the course is allowed, prerequisites, scheduling conflicts, availability (space in the course), and the number of courses selected. These will appear in a list form which can be inspected, altered, or deleted on the basis of name, student number, and some kind of password. The system should also handle late registration, withdrawal, and changes.

Course File

All courses with sections and tutorials, class sizes, and prerequisites shall be entered into a master course database. This database should also contain information about academic programs (core, electives). This database will be used in the registration and course scheduling processes.

Scheduling

When the course database is updated, a manager will invoke a scheduling algorithm to schedule courses for each program to avoid time conflicts. Courses may have multiple sections, which will reduce potential conflict in many cases. The addition of a new course should not involve changes in the scheduling of existing courses without direct intervention by the user.

Classroom File

The classroom file contains the set of available classrooms with size, location, and a technical support rating which indicates its suitability for various types of course. This file is used in the classroom allocation algorithm, which may have an effect on the scheduling algorithm.

Examinations

The examination-scheduling algorithm will use the course scheduling and classroom assignment information to allocate time slots and classrooms for examinations. In general, each classroom will have an examination size that is about 60% of its seating capacity. 

Faculty

This file will contain a list of instructors together with the courses they have been assigned. The records may also have space for other information, but this has not yet been decided.

Student records

This file should contain all relevant information about students: name address, etc. It should also have a complete list of the courses taken and registered for, including marks and G.P.A. information.

Reports

It should be possible to generate summary reports of significant information: lists of faculty with their teaching assignments, lists of students in a class, or multi-section course, grade lists, class averages, etc.

Security

There should be different levels of security for different users. Typical users are: System manager, Registrar, Student Affairs manager, Graduate Program Directors, General Administrative users, Students.

1.2 Functional Requirements

1.2.1 User Characteristics

Public user scenarios

To show public user scenarios systematically, we redraw public user’s use case diagram to include the relationship among use cases as shown in the Figure bellow.

[image: image4.png]
Figure 1.1 Public user case diagram with relationship

When public user accesses these functions, she/he may faces five user interfaces. We put the interface in the position where we first time mention it. Some of the main activities that the user can do is listed as following:

· Access University’s homepage

· Apply the admission online

· Check the status of application

Students

· manage personal information

· view academic information

· register course, including add course, drop course

· view core and optional course 

· view course schedule

· view examination schedule
Faculty

· Can access parts of the system that require a Faculty user name and password. He or she has higher access privileges than current students and professors.

· Can view teaching schedule in the program

· Can view exam schedule

· Can view class list( include grade list)

· Can post student grade to other department

System monitor

· manage access account to the system

· maintain web page

Graduate program director(GDP)

· Can access parts of the system that require a GPD user name and password. He or she has higher access privileges than current students and professors.

· Can add/cancel courses in the program

· Can update the course list

· Can view Professor information

· Can view student academic record in the program

· Can view course registration information

Administrator

· manage student personal information

· manage student academic information

· manage faculty personal information

· manage faculty academic information

· manage course information

· manage course-delivery information

· manage course-registration information

· manage classroom 

· schedule course

· schedule examination

· manage account

· maintain web pages

· reports

1.2.2 Database Requirements

Entities

Entities are illustrated in the ER diagram. The database requirements are presented as schema for all the different users, which follows the ER diagram. Here are 2 examples (GPD & Faculty):

GPD Database Requirements

· This file will contain all relevant information about GPD:

· full name

· GPD password

· address

· telephone number

· citizenship

Faculty Database Requirements

· This file will contain all relevant information about Faculty:

· full name

· Faculty password

· address

· telephone number

· citizenship

ER Model Diagram

[image: image1.wmf]Student

applicant

Program

Section

Employee

is_a

Faculty

Monitor

GPD

Administrator

works_in

Department

P_Offer

Manage

Enrolled

Taken

Course

Has

Register

Supervise

Teach

Drop

Classroom

Schedule

Exam

Account

Has

C_Offer

Consist_of

LoginInfo

Has

Has

m

Pfee

Pname

Pcredit

Apply

Year

Date

Term

PGPA

Pid

n

ExpiryDate

Paid

Password

AccesLevel

OverDue

SAddress

SID

SName

SSin

SPhone

SStatus

SCitizenship

SEmail

Type

RDate

DDate

ExamDate

ExamStartTime

ExamEndTime

ClassDay

ClassStartTime

ClassEndTime

CRoom

CLocation

CCapacity

CType

CEquipment

Status

Term

Year

Grade

Prerequest

TuitionInfo

Year

Term

Deadline

OtherFee

LateRegFee

FeePerCredit

1

n

1

1

n

n

1

m

n

m

n

EPhone

EID

ESIN

EEmail

EName

EAddress

APhone

ASIN

ACitizenship

AEmail

AName

AAddress

DName

DPhone

DAddress

DEmail

DID


Figure 1.2 ER Model Diagram

 Schema Tables

1. Applicant (AID, AfirstName, AlastName, ASIN, ADOB, Asex, Aaddress, Acity, Aprovince ApostCode, Aphone, Acitizenship, Astatus).

Key: AID, the ID of applicant.

FD:  AID ( {AfirstName, AlastName, ASIN, ADOB, Asex, Aaddress, Acity, Aprovince ApostCode, Aphone, Acitizenship, Astatus}.

BCNF: Yes.

2. Apply(AppID, ProID, Ayear, Aterm, Adate, AStatus ).

Notes:  AppID: Applicant’s ID.

     ProID: Program ID.

        Key: {AppID, ProID}.

        FD: {AppID, ProID} ( { Ayear, Aterm, Adate, AStatus }.

        BCNF: Yes.

Foreign key: AppID, ProID.

3. Program(PID, Pname, Pfee, Pcredit, PGPA, PGPD_ID, PDID ).

Notes: PGPD_ID: ID of GPD who manages this program.

            PDID: ID of Department that offers the program.

Key: PID, the ID of the program.

FD: PID({Pname, Pfee, Pcredit, PGPA, PGPD_ID, PDID }

BCNF: Yes.

4. Employee(EID, EfirstName, ElastName, Eaddress, Ecity, Eprovince, EpostCode, EBOD, ESIN, Ephone, Esex,Eemail, Esince, Eposition, Esalary, EDID).

Notes: EDID is Department ID.

Key: EID.

FD: EID({ EfirstName, ElastName, Eaddress, Ecity, Eprovince, EpostCode, EBOD, ESIN, Ephone, Esex,Eemail, Esince, Eposition, Esalary, EDID}.

BCNF: Yes.

5. Department(DID, Dname, Daddress, Dphone, Dfax, Demail).

Notes: 

Key: DID, the ID of Department.

FD: DID({ Dname, Daddress, Dphone, Dfax, Demail}.

BCNF: Yes.

6. Faculty(FID, Fresearch).

Notes: FID: Employee ID.

Key: FID.

Foreign Key: FID.

FD: FID(Fresearch.

BCNF: Yes.

7. Student(SID, SfirstName, SlastName, SDOB, Saddress, Scity, Sprovince, SpostCode, Sphone, Semail, Scitizenship, SSIN, Ssex, Sstatus, SsuperID, SenrolledYear, SenrolledTerm, SproID).

Notes: SsuperID, the ID of  Superviser.

            SproID: Enrolled program ID.

Key: SID.

FD: SID({ SfirstName, SlastName, SDOB, Saddress, Scity, Sprovince, SpostCode, Sphone, Semail, Scitizenship, SSIN, Ssex, Sstatus, SsuperID, SenrolledYear, SenrolledTerm, SproID}.

BCNF: Yes.

8. Course(CID, Cname, Ccredits, Cstatus, CDID).
Notes: CDID, the ID of department that offers the course.

Key: CID.

FD: CID({Cname, Ccredits, Cstatus, CDID}.

BCNF: Yes.

9. Section(SCID, SEName, MinEnrolled, MaxEnrolled).

Notes:  SCID, the Course ID.

Key: {SCID, SEName}.

Foreign key: SCID.

FD: {SCID, SEName}({ MinEnrolled, MaxEnrolled}.

BCNF: Yes.

10. ClassRoom(CRID, CRlocation, CRcapacity)

Notes: CRID is room ID.

Key: CRID.

FD: CRID ( {CRlocation, CRcapacity}.

BCNF: Yes.

11. Payment(PAccID, Pamount, Pdate).

Notes: PaccID is Student ID.

Key: {PAccID, Pamount, Pdate}.

Foreign key: PAccID.

FD:

BCNF: Yes.

12. Exam(ECID, ESEName, Eyear, ETID, ECRID, Edate, EstartingTime, EsndingTime).

Notes: ECID is Course ID.

           ESEName: Section name.

           ECRID: Room ID.

Key: {ECID, ESEName, Eyear, ETID, ECRID}

FD: {ECID, ESEName, Eyear, ETID, ECRID}( {Edate, EstartingTime, EsndingTime}.

BCNF: Yes.

13. Take(TSID, TCID, TSEName, TTYear, TTID,  Grade, RegDate, DropDate, Status).

Notes:  TSID is Student ID.

             TCID is course ID.

             TSEName is section name.

             TTID is ID of term.

Key: {TSID, TCID, TSEName, TTYear, TTID}

FD: {TSID, TCID, TSEName, TTYear, TTID}( {Grade, RegDate, DropDate, Status}

BCNF: Yes.

14. Prerequest(PCID, PreCID).

Notes: both are course ID.

Key: {PCID, PreCID}

FD: 

BCNF: Yes.

15. Consist_of(CPID, CCID, Ctype).

Notes: CPID is Program ID.

           CCID is  Course ID.

Key: {CPID, CCID}

BCNF: Yes.

16. LoginInfo(LID, Lpassword, LaccessLevel, LexpiryDate, Lstatus, LfailCounter).

Notes:  LID is ID of User.

Key: LID.

FD: LID({ Lpassword, LaccessLevel, LexpiryDate, Lstatus, LfailCounter}

BCNF: Yes.

17. Term(TYear, TID, TName, Fee, PaidDeadLine, RegStartDate, RegDeadLine, DisconDeadLine, PayinterestDeadLine, DropDeadLine, Fdate, Tdate).

Notes:

Key: {TYear, TID}

FD: {TYear, TID}( {TName, Fee, PaidDeadLine, RegStartDate, RegDeadLine, DisconDeadLine, PayinterestDeadLine, DropDeadLine, Fdate, Tdate}.

BCNF: Yes.

18. TimeSlot(TSCID, TSSEName, TSYear, TSTID, Day_of_week, Ftime, Ttime, TSCRID, TSFID).

Notes: 

Key: {TSCID, TSSEName, TSYear, TSTID, Day_of_week}

FD: {TSCID, TSSEName, TSYear, TSTID, Day_of_week}( {Ftime, Ttime, TSCRID, TSFID}.

BCNF: Yes.

1.3 Functional Specifications

1.3.1 Public user scenarios

Normal scenario to view University’s general information

1. A public user connects to the application, by pointing the browser to the URL for the University’s homepage.

2. The public user could select to access public user homepage..

3. The public user selects to view general information of the university. 

4. The web page containing general information of the university is shown to the user.

Normal scenario to apply for admission online

1. The public user could select to access public area of the university’s homepage. 

2. Public user selects to apply for admission online.

3. The system shows the application form.

4. Public user fills the form completely.

5. Public user submits the filled form.

6. The system verifies the form successfully.

7. The system writes form data into database.

8. The system notifies public user the assigned file number for checking status later.

The dynamic interaction scenario between public user and the system is described as: 


[image: image2.wmf]:

DBApp

Table

 : Public user

:homepage

form

:application

form

:

servelet

thread

:academic

programs

1: 

displayHomepage

4: 

fillForm

5: verify data

6: submit

8: 

return file number

2: 

displayPublicuser homepage

3: 

displayAppform

7: save data


Figure 1.3 Sequence diagram of applying the admission online

Normal scenario to check the status of application

When a public user accesses public user homepage and selects to check the status of application, the system prompts a form to the public user requesting the user’s application file number. The user must respond to the system following the steps:

1. Public user fills out the form.

2. Public user submits the form.

3. The system verifies filled data successfully.

4. The system queries database successfully.

5. The system notifies the public user the status of application.

Abnormal scenario to check the status of application

When a user made a mistake in response to the system. The system would respond with error messages:

Public user files the form with a wrong file number.

The system verifies filed data.

The system notifies public user that the file number is wrong.

The system prompts public user to submit a right number again.

1.3.2 Student scenarios

The system provides student to register for courses on the web. Students may call up lists of core courses and electives for their academic program, register for courses, manage personal information, etc. The system will check that whether the course is allowed, prerequisites, scheduling conflicts, availability, and the number of courses selected. 

The system also handles late registration, withdrawal, and changes. We put late registration into add course. The only difference between late registration and normal add course is the register time. We put withdrawal into drop course, use action time to make decision whether this dropping course is normal drop course with refunding tuition fee, or withdrawal. Changing registration is only combination of dropping course and adding course.

The scenarios listed in this section describe the interaction between student and the system. To show student’s scenarios systematically, we redraw student’s use case diagram to include the relationship as figure 1.

[image: image5.jpg]
Figure 1.4 Student case diagram with relationship

Normal scenario to view core and optional courses

1. Student selects to login the system.  

2. A dialogue box will appear prompting the student to enter his/her ID and password.

3. Student enters his/her ID and password.

4. The system verifies his/her ID and password. If the student ID number and password are correct, Student Information Web Page will appear.

5. Student selects to view core and optional courses.

6. The system searches the related list of courses, and reports to student the list which contains the following data:

· Course ID

· Course Name

· Core(Yes/No)

· Optional(Yes/No)

Normal scenario to add course (including late registration).

1-4. The Same as 3.2.1.

5. Student selects to register courses.

6. Course Registration Web Page will appear.

7. Student selects to add courses.

8. The system prompts student a registration form containing following data:

· course ID

· section ID

9. Student fills the form and submits the form.

10. The system verifies student can register these courses, and displays a successful message. If it is late registration, debts student’s account with late registration fee. In the meanwhile, the data is saved into database.

Abnormal scenario to add course

1-9. The Same as 3.2.2.

10. The system verifies and finds that student can’t register these courses, because of that one of the following reasons:

· Course is full.

· Violates course prerequisites.

· Courses’ schedule conflicts.

· Student account appears debt.

· The total number of registering courses is greater than the maximum allowed.

11. The system notifies student the result. 

· If course is full, the system inquires student whether she/he prefers to be put into the course waiting list. If student selects to be put into waiting list, the system writes something into course registration table. The system notifies student that she/he is put into course waiting list.

· If violating course prerequisites, the system notifies student the prerequisite course she/he should register first.

· If some courses’ schedule conflicts, the system notifies student this result, and lists the conflicting courses.

· If the student’s account appears debt, registration fails. The system notifies student this result.

· If the system finds out the student is trying to register too many courses, the system notifies student this result and lists all courses the student trying to register. Student confirms which courses she/he prefers to register. The system verifies again. The system update database. The system notifies student which courses are registered.

Normal scenario to drop course before/after refunding deadline

1-4.  The same as 3.2.1.

5. Student selects to register courses.

6. Course Registration Web Page will appear.

7. Student selects to drop courses.

8. The system prompts the student a form containing following data:

· course ID

· section ID

9. Student fills the form and submits the form.

10. The system verifies this dropping course application, and finds this application is reasonable. 

11. If time is before refunding deadline, the system updates student registration, and credits student’s account. If it is after refunding deadline, The system updates student registration, writes a record into student’s academic record table with credit ‘W’.

Abnormal scenario to drop course before refunding deadline

1-9. The Same as 3.2.4.

11. The system verifies this dropping course application, and finds the dropping course is prerequisite course of the other courses. 

12. The system notifies student can not drop the course.

Normal scenario to view academic record

1-4.  The same as 3.2.1.

5.  Student selects to view academic record.

6.  The system queries the database, and reports the result to student.

Normal scenario to email administrator

1-6. The same as 3.2.6.

7. Student finds some errors in the academic records and selects to report the error by email.

8. The system prompts student a form with predefined email address.

9. Student writes mail context and sends the mail.

Normal scenario to view personal information

1-4. The same as 3.2.1.

5. Student selects to view personal information.

6. The system queries the database, and reports the result to student, which contains:

· StudentID

· FirstName

· LastName

· Address

· City

· StateOrProvince

· PostalCode

· PhoneNumber

· Citizenship

· ResIDentStatus

· DateOfBirth

· SIN

· DepartmentName

· ProgramName

Normal scenario to update personal information

1-4. The same as 3.2.1.

5. Student selects to update her/his personal information.

6. Student edits her/his personal information and submits new data.

7. The system updates student’s personal information.

8. The system notifies student her/his new personal information, and writing successful.

Normal scenario to view examination schedule

1-4. The same as 3.2.1.

5. Student selects to view examination schedule.

6. The system queries the database, and reports the result to student, each column contains:

· Course ID

· Course Name

· Year

· Term

· Section

· Building and Room No.

· Date

· Start Time

· End Time

Normal scenario to view course schedule

1-4.  The same as 3.2.1.

5. Student selects to view course schedule.

6. The system queries the database, and reports the result to student, each column contains:

· Course ID

· Course Name

· Year

· Term

· Section

· Building and Room No.

· Day

· Start Time

· End Time

1.3.3 Faculty scenarios

Provides faculty accesses to functions to view teaching schedule, to view exam schedule, to view class list, and to post the grade for a specified class to other department. 

Using the keyboard, the user enters his/her Faculty user name. Using the tab key or the mouse, the user moves into the next box and enters his/her password.  Upon completion he/she clicks on the submit button.

If the user name and password are incorrect, the user will receive an error message indicating that the access has been denied.  The user will have the option to re-enter his/her user name and password or to cancel the operation.

If the user name and password are correct, the system will shows Faculty’s homepage with these options:

· View teaching schedule

· View exam schedule 

· View class list

· Post the grade for specified class 

Each option will link the user to a corresponding page.

[image: image6.jpg]
Figure 1.5 Faculty case diagram with relationship

Normal scenario  to view teaching schedule

1. Professor connects to the application, by pointing the browser to the URL for the university’s homepage.

2. Professor selects to login the system.

3. The system prompts professor to enter his/her id and password.

4. Professor enters his/her id and password.

5. The system verities his/her id and password.

6. The system shows professor the Faculty’s homepage.

7. Professor selects to view teaching schedule.

8. The system searches this user’s teaching schedule, which contains:

· Course ID

· Course Name

· Year

· Term

· Section

· Building and Room No.

· Start Time

· End Time

9. The system shows this user’s teaching schedule.

Normal scenario to view exam schedule

1-6. The same as Normal scenario to view teaching schedule.

7. Professor selects to view exam schedule.

8. The system searches this user’s exam schedule, which contains:

· Course ID

· Course Name

· Year

· Term

· Section

· Building and Room No.

· Day 

· Start Time

· End Time

9.  The system shows this user’s exam schedule.

Normal scenario to view class list

1-6. The same as Normal scenario  to view teaching schedule.

7. Professor selects to view class list.

8. The system searches the list of courses taught by this user, which contains:

· Course ID

· Year

· Term

·  Section

9. The system shows the course list and a link to the class list for every course.

10. Professor chooses to view one class list.

11. The system searches the needed class grade list, which contains:

· Student ID

· Student Name

· Grade

12. The system shows one class list, also offers an choice to view the other courses’ classlist

Normal scenario  to post grade for a specified class

1-6. The same as Normal scenario to view teaching schedule.

7. Professor selects to post grade.

8. The system searches this needed class grade list, which contains:

·  Course ID

·  Student ID

·  Year

·  Term

·  Section

·  Grade

9.  The system posts this class grade list.

Abnormal scenario to view teaching schedule

1-6. The same as Normal scenario  to view teaching schedule.

7.   The system notifies professor the wrong password entered.

8.  The system prompts professor to enter his/her id and password again and adds 1 to the counter.

9. Professor reenters his/her id and password with another two tries.

10. The system verifies the failed counter is bigger than 3.

11.  The system terminates the login function and notifies user to contact the system administrator to reactivate his/her account.

Abnormal scenario to view exam schedule

1-11 The same as abnormal scenario to view teaching schedule.

Abnormal scenario to view class list

1-11 The same as abnormal scenario to view teaching schedule.

Abnormal scenario to post the grade for a specified class

1-11 The same as abnormal scenario to view teaching schedule.

1.3.4 System monitor scenarios

General Introduction

System monitor is responsible for the maintenance of web accounts for all users, and also for the maintenance of all university web pages.

[image: image7.jpg]
Figure 1.6 Monitor’s use case diagram with relationship
Scenario: Monitor opens a new member account 

1. Monitor connects to the university’s homepage.

2. Monitor enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter monitor’s homepage

5. Monitor selects the ‘open new account’ button

6. The system prompts monitor to enter following data:

· member ID 

· Password 

· Privilege level

· Expire date

7. Monitor enters required data

8. The system verifies the data.

9. The system writes the account data to the database 

10. The system notifies monitor a new account is opened.

Scenario: Monitor deletes a member account 

1. Monitor connects to the university’s homepage.

2. Monitor enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter monitor’s homepage

5. Monitor selects the ‘delete account’ button

6. The system prompts monitor to enter following data:

· member ID 

7. Monitor enters required data

8. The system verifies the data.

9. The system delete the account from the database 

10. The system notifies monitor the account has been deleted.

Scenario: Monitor modifies a member account 

1. Monitor connects to the university’s homepage.

2. Monitor enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter monitor’s homepage

5. Monitor selects the ‘update account’ button

6. The system prompts monitor to enter following data:

7. member ID 

8. Monitor enters required data

9. The system verifies the data.

10. The system show the member information

11. Monitor update related member information

12. Monitor click the save button

13. System verifies the information

14. System writes the new information to the database

15. System notifies monitor the account has been updated 

Scenario: Monitor enable/disable a web page

1. Monitor connects to the university’s homepage.

2. Monitor enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter monitor’s homepage

5. Monitor selects the ‘web page maintain’ button

6. The system shows the entire web page list 

7. Monitor selects the web page

8. Monitor enable/disable this web page

9. The system promotes the monitor to confirm

10. Monitor click the ‘confirm’ button

11. System enables/disables the web page

12. System notifies monitor the web page has been enabled/disabled 

Scenario: Monitor posts notes

1. Monitor connects to the university’s homepage.

2. Monitor enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter monitor’s homepage

5. Monitor selects the ‘note post’ button

6. A text editor has popped up

7. Monitor typed the notes

8. Monitor ‘post’ button

9. System post the notes to the web page

10. System notifies monitor the notes has been posted

1.3.5 Graduate program director scenarios

Provides GPD access to functions to view course registration information, student information, and professor information. He/she is also able to add/cancel courses and update courses.

[image: image8.jpg]Figure 1.7 GPD’s  case diagram with relationship

Using the keyboard, the user enters his/her GPD user name. Using the tab key or the mouse, the user moves into the next box and enters his/her password.  Upon completion he/she clicks on the submit button.

If the user name and password are incorrect, the user will receive an error message indicating that the access has been denied.  The user will have the option to re-enter his/her user name and password or to cancel the operation.

If the user name and password are correct, the system will shows GPD the Graduate Program Director’s homepage with these options:

· View registration information 

· View student information 

· View professor information

· Add  course

· Cancel course

· Update course

Each option will link the user to a corresponding page.

Normal scenario to view course Registration information

1.GPD connects to the application, by pointing the browser to the URL for the university’s homepage.

2. GPD selects to login the system.

3. The system prompts GPD to enter his/her ID and password.

4. GPD enters his/her ID number and password.

5. The system verifies his/her ID number and password

6. The system shows GPD the Graduate Program Director’s homepage.

7. GPD selects to view course registration information.

8. The system prompts the user to fill out the following data:

· Course ID

· Year

· Term

· Section

9. GPD fills out the needed data and presses ‘View’ button.

10. The system searches the database and returns a list of students with the following information:

· Student ID

· Student Name

· Department

· Program

Normal scenario to view Student information

1-6. The same as Normal scenario to view course Registration information.

7. GPD selects to view student information.

8. GPD presses ‘View’ button.
8. The system searches the student table and selects student in the program.

9. Information contains a list of the students including their personal information and their academic record.

Normal scenario to view professor information

1-6. The same as Normal scenario to view course Registration information.

7. GPD selects to view professor information.

8.GPD presses ‘View’ button.
9. The system searches the faculty table and selects professor in the program.

10. The system shows professor information.

11. Information contains a list of the professors including their personal information and their teaching schedule.

Normal scenario to add courses 

1-6. The same as Normal scenario to view course Registration information.

7. GPD selects to modify courses in the program.

8. GPD selects to add a course.

9. The system prompts GPD to enter the following data:

· Course ID

· Course Name  

10. GPD enters the needed data.

11. The system verifies the data.

12. The system adds the course into database.

13.The system notifies GPD that one course is added.

Normal scenario to cancel courses

1-6. The same as Normal scenario to view course Registration information.

7. GPD selects to cancel courses in the program.

8. GPD selects to cancel a course.

9. The system prompts GPD to enter the following data:

· Course ID

· Course Name  

10. GPD enters the needed data.

11. The system verifies the data.

12. The system cancels the course from database.

13. The system notifies GPD that one course is canceled.

Normal scenario to update course

1-6. The same as Normal scenario to view course Registration information.

7. GPD selects to update courses in the program.

9. The system updates the course to the database.

11. The system notifies GPD that courses are updated.

Abnormal scenario to view course Registration information

1-6 The same as 3.3.1

7. The system prompts the user to fill out the data Normal scenario to view course Registration information.

8. GPD fills out the needed data and presses on the “View” button.

9. The system searches the database, but failed.

10. The system notifies GPD that the course chosen is not offered.

Abnormal scenario to add course 

1-10 The same as Normal scenario to add courses.
11. The system verifies the data.

12. The system notifies GPD that the data entered is not valid.  

Abnormal scenario to cancel course

1-10 The same as 3.3.5 Normal scenario to cancel courses.

11. The system verifies the data.

12. The system notifies GPD that the data entered is not valid.

1.3.6  Administrator scenarios

General Introduction

Provides the administrative user with full access to functions pertaining to general university administrative tasks, such as course schedule, examination schedule.

[image: image9.jpg]Figure 1.8. Administrator views student personal Information
Scenario: Administrator views student personal Information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student personal information.

8. The system shows administrator the student personal information homepage.

9. Administrator chooses to view student personal information.

10. The system prompts user to enter searching criterion, which contains:

· student ID

· student name


· program

11. The system searches needed student personal information.

12. The system shows the personal information

Scenario: Administrator adds student personal Information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student personal information.

8. The system shows administrator the student personal information homepage.

9. Administrator  decide to add student personal information

10. The system prompts administrator to enter student personal information containing:

· SID

· Name

· Date of Birth

· Title

· Address

· Telephone Number

· Email

11. Administrator enters the data

12. The system  writes related data in database

Scenario: Administrator modifies student personal Information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student personal information.

8. The system shows administrator the student personal information homepage.

9. Administrator  decide to modify student personal information

10. The system prompts administrator to modify student personal information containing:

· SID

· Name

· Date of Birth

· Title

· Address

· Telephone Number

· Email

11. Administrator modify the data

12. The system  modify related data in database

Scenario: Administrator deletes student personal Information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student personal information.

8. The system shows administrator the student personal information homepage.

9. Administrator  decide to delete student personal information

10. The system prompts user to enter searching criterion, which contains:

· student ID

· student name

· program

11.Administrator choose to delete the data

12.The system delete related data in database

Scenario: Administrator make student personal information report 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage.

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student personal information.

8. The system shows administrator the student personal information homepage.

9. Administrator decide to make student personal information report

10. The system generates a report

Scenario: Administrator views student academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student academic information.

8. The system shows administrator the student academic information homepage.

9. Administrator chooses to view student academic information.

10. The system prompts user to enter searching criterion, which contains:

· student ID

· student name

· program

11. The system searches needed student academic information.

12. The system shows the academic information

Scenario: Administrator adds student academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student academic information.

8. The system shows administrator the student academic information homepage.

9. Administrator  decide to add student academic information

10. The system prompts administrator to enter student academic information containing:

SID

· Name

· Program

· List of course completed, credits accumulated and grade achieved

· List of currently enrolled

· Cumulative grade point average (GPA)

· Email

11. Administrator enters the data

12. The system  writes related data in database

Scenario: Administrator modifies student academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student academic information.

8. The system shows administrator the student academic information homepage.

9. Administrator  decide to modify student academic information

10. System prompts administrator to modify student academic information containing:

· SID

· Name

· Program

· list of course completed, credits accumulated and grade achieved

· list of currently enrolled

· Cumulative grade point average (GPA)

· Email

11. Administrator modify the data

12. The system  modify related data in database

Scenario: Administrator deletes student academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student academic information.

8. The system shows administrator the student academic information homepage.

9. Administrator  decide to delete student academic information

10. The system prompts user to enter searching criterion, which contains:

· student ID

· student name

· program

11.Administrator choose to delete the data

12.The system deletes related data in database

Scenario: Administrator make student academic information report

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage.

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage student information.

6. The system shows administrator the student information homepage.

7. Administrator chooses to manage student academic information.

8. The system shows administrator the student academic information homepage.

9. Administrator decide to make student academic information report

10. The system generates a report

Scenario: Administrator views faculty personal information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty personal information.

8. The system shows administrator the faulty personal information homepage.

9. Administrator chooses to view faulty personal information.

10. The system prompts user to enter searching criterion, which contains:

· faulty ID

· faulty name

· department

11. The system searches needed faulty personal information.

12. The system shows the personal information

Scenario: Administrator adds faculty personal information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty personal information.

8. The system shows administrator the faulty personal information homepage.

9. Administrator  decide to add faulty personal information

10. The system prompts administrator to enter faulty personal information containing:

· FID

· Name

· Date of Birth

·    Title

· Address

·    Telephone Number

· Email

11. Administrator enters the data

12. The system  writes related data in database

Scenario: Administrator modifies faculty personal information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty personal information.

8. The system shows administrator the faulty personal information homepage.

9. Administrator  decide to modify faulty personal information

10. The system prompts administrator to modify faulty personal information containing:

· FID

· Name

· Date of Birth

·    Title

· Address

·    Telephone Number

· Email

11. Administrator modify the data

12. The system  modify related data in database

Scenario: Administrator deletes faculty personal information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty personal information.

8. The system shows administrator the faulty personal information homepage.

9. Administrator  decide to delete faulty personal information

10. The system prompts user to enter searching criterion, which contains:

· faulty ID

· faulty name

· department

11.Administrator choose to delete the data

12.The system deletes related data in database

Scenario: Administrator makes faulty personal information report

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage.

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty personal information.

8. The system shows administrator the faulty personal information homepage.

9. Administrator decide to make faulty personal information report

10. The system generates a report

Scenario: Administrator views faculty academic information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty academic information.

8. The system shows administrator the faulty academic information homepage.

9. Administrator chooses to view faulty academic information.

10. The system prompts user to enter searching criterion, which contains:

· faulty ID

· faulty name

· department

11. The system searches needed faulty academic information.

12. The system shows the academic information

Scenario: Administrator adds faculty academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty academic information.

8. The system shows administrator the faulty academic information homepage.

9. Administrator  decide to add faulty academic information

10. The system prompts administrator to enter faulty academic information containing:

· FID

· Name

· department

· list of course taught

· list of currently teaching duty and schedule

· academic achievement, papers, and so on

· Email

11. Administrator enters the data

12. The system  writes related data in database

Scenario: Administrator modifies faculty academic information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty academic information.

8. The system shows administrator the faulty academic information homepage.

9. Administrator  decide to modify faulty academic information

10. System prompts administrator to modify faulty academic information containing:

· FID

· Name

· department

· list of course taught

· list of currently teaching duty and schedule

· academic achievement, papers, and so on

· Email

11. Administrator modify the data

12. The system  modify related data in database

Scenario: Administrator deletes faculty academic information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty academic information.

8. The system shows administrator the faulty academic information homepage.

9. Administrator  decide to delete faulty academic information

10. The system prompts user to enter searching criterion, which contains:

· faulty ID

· faulty name

· program

11.Administrator choose to delete the data

12.The system deletes related data in database

Scenario: Administrator makes faulty academic information report

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage.

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage faulty information.

6. The system shows administrator the faulty information homepage.

7. Administrator chooses to manage faulty academic information.

8. The system shows administrator the faulty academic information homepage.

9. Administrator decide to make faulty academic information report

10. The system generates a report

Scenario: Administrator views course information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course information.

6. The system shows administrator the course information homepage.

7. Administrator chooses to view course information.

8. The system prompts user to enter searching criterion, which contains:

·     Course ID

·  Course Name

9. The system searches needed course information.

10. The system shows the course information

Scenario: Administrator adds course information 

Normal scenario 4.2: Administrator adds course

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course information.

6. The system shows administrator the course information homepage.

7. Administrator  decide to add course information

8. The system prompts administrator to enter course information containing:

· Course ID

· Course Name

· Program

· Prerequisites

· Credit

· Course Specification

9. Administrator enters the data

10. The system  writes related data in database

Scenario: Administrator modifies course information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course information.

6. The system shows administrator the course information homepage.

7. Administrator  decide to update course information

8. The system prompts user to enter searching criterion, which contains:

· Course ID

·    Course Name

9. The system searches needed course information.

10. The system shows the course information

11. Administrator modify the data

12. The system  modify related data in database

Scenario: Administrator deletes course information 

An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

1. An administrator selects to login the system.

2. The system shows administrator the Administrator’s homepage.

3. The administrator could select to access administrator homepage. 

4. Administrator chooses to manage course information.

5. The system shows administrator the course information homepage.

6. Administrator chooses to delete course information.

7. The system prompts user to enter searching criterion, which contains:

· Course ID

· Course Name

8. The system searches needed course information.

9. The system deletes related data in database

Scenario: Administrator views course-delivery information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-delivery information homepage.

7. Administrator chooses to view course-delivery information.

8. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

9. The system searches needed course information.

10. The system shows the course-delivery information

Scenario: Administrator adds course-delivery information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-delivery information homepage.

7. Administrator  decide to add course-delivery information

8. The system prompts administrator to enter course-delivery information containing:

· Course-Delivery ID

· Course ID

· Term

· Section

· Instructor

· Tutor

· Classroom

· Class Size

· Total Hours

· End Time

9. Administrator enters the data

10. The system writes related data in database

Scenario: Administrator modifies course-delivery information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-delivery information homepage.

7. Administrator decide to update course-delivery information

8. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

·    Course Name

9. The system searches needed course-delivery information.

10. The system shows the course-delivery information

11. Administrator modify the data

12. The system modifies related data in database

Scenario: Administrator deletes course-delivery information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-delivery information homepage.

7. Administrator chooses to delete course-delivery information.

8. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

· Course Name

9. The system searches needed course-delivery information.

10. The system deletes related data in database

Scenario: Administrator makes course-delivery information report

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-delivery information homepage.

7. Administrator chooses to make report of course-delivery information.

8. The system prompts user to enter searching criterion, which contains:

· Program

· Term

9. The system searches needed course-delivery information.

10. The system generates a report

Scenario: Administrator views course-registration information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-delivery information.

6. The system shows administrator the course-registration information homepage.

7. Administrator chooses to view course- registration information.

8. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

9. The system searches needed course- registration information.

10. The system shows the course- registration information

Scenario: Administrator adds course-registration information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course- registration information.

6. The system shows administrator the course- registration information homepage.

7. Administrator decide to add course-registration information

8. The system prompts administrator to enter course-registration information containing:

· Student ID

· Course-Delivery ID

9. Administrator enters the data

10. The system writes related data in database

Scenario: Administrator modifies course-registration information 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-registration information.

6. The system shows administrator the course-registration information homepage.

7. Administrator decide to update course-registration information

8. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

9. The system searches needed course-registration information.

10. The system shows the course-registration information

11. Administrator modify the data

12. The system modifies related data in database

Scenario: Administrator deletes course-registration information

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to manage course-registration information.

6. The system shows administrator the course-registration information homepage.

7. Administrator chooses to delete course- registration information.

8. The system prompts user to enter searching criterion, which contains:

· Student ID

· Course-Delivery ID

9. The system searches needed course- registration information.

10. The system deletes related data in database

Scenario: Administrator makes course-registration information report

11. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

12. An administrator selects to login the system.

13. The system shows administrator the Administrator’s homepage.

14. The administrator could select to access administrator homepage. 

15. Administrator chooses to manage course-registration information.

16. The system shows administrator the course-registration information homepage.

17. Administrator chooses to make report of course-registration information.

18. The system prompts user to enter searching criterion, which contains:

· Course-Delivery ID

19. The system searches needed course- registration information.

20. The system generates a report

Scenario: Administrator views classroom information 

11. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

12. An administrator selects to login the system.

13. The system shows administrator the Administrator’s homepage.

14. The administrator could select to access administrator homepage. 

15. Administrator chooses to view classroom information.

16. The system prompts user to enter searching criterion, which contains:

· Classroom Number

17. The system searches needed classroom information.

18. The system shows the classroom information

Scenario: Administrator modifies classroom information

13. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

14. An administrator selects to login the system.

15. The system shows administrator the Administrator’s homepage.

16. The administrator could select to access administrator homepage. 

17. Administrator chooses to manage classroom information.

18. The system prompts user to enter searching criterion, which contains:

· Classroom Number

19. The system searches needed classroom information.

20. The system shows the classroom information

21. Administrator modify the data

22. The system modify related data in database

Scenario: Administrator makes classroom information report

21. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

22. An administrator selects to login the system.

23. The system shows administrator the Administrator’s homepage.

24. The administrator could select to access administrator homepage. 

25. Administrator chooses to manage classroom information.

26. The system shows administrator the classroom information homepage.

27. Administrator chooses to make report of classroom information.

28. The system searches needed classroom information.

29. The system generates a report

Scenario: Administrator manually schedules course

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to Manual Schedule Course.

6. The system shows administrator the Manual Schedule Course homepage.

7. The system prompts the user to enter following data:

· Course ID

· Section

· Building and Room No.

· Day

· Start Time
·  End Time 
8. Administrator enters the data

9. The system writes related data in database

Scenario: Administrator automatically schedules course 

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to Automatic Schedule Course.

6. The system shows administrator the Automatic Schedule Course homepage.

7. The system generate a report, including:

· Course ID

· Section

· Class Size

· Building and Room No.

· Day

· Start Time
· End Time 
Scenario: Administrator manually schedules Examination

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to Manual Schedule Examination

6. The system shows administrator the Manual Schedule Examination homepage.

7. The system prompts the user to enter following data:

· Course ID

· Section

·    Building and Room No.

·    Day

· Start Time

· End Time

8. Administrator enters the data

9. The system writes related data in database

Scenario: Administrator automatically schedules Examination

1. An administrator connects to the application, by pointing the browser to the URL for the application’s homepage. 

2. An administrator selects to login the system.

3. The system shows administrator the Administrator’s homepage.

4. The administrator could select to access administrator homepage. 

5. Administrator chooses to Automatic Schedule Examination.

6. The system shows administrator the Automatic Schedule Examination homepage.

7. The system generate a report, including:

· Course ID

· Section

·    Building and Room No.

·    Day

· Start Time

· End Time
Scenario: Administrator opens a new member account 

1. Administrator connects to the university’s homepage.

2. Administrator enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter administrator’s homepage

5. Administrator selects the ‘open new account’ button

6. The system prompts monitor to enter following data:

· member ID 

· Password 

· Privilege level

· Expire date

7. Administrator enters required data

8. The system verifies the data.

9. The system writes the account data to the database 

10. The system notifies monitor a new account is opened.

Scenario: Administrator deletes a member account 

1. Administrator connects to the university’s homepage.

2. Administrator enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter administrator’s homepage

5. Administrator selects the ‘delete account’ button

6. The system prompts monitor to enter following data:

·      member ID 

7. Administrator enters required data

8. The system verifies the data.

9. The system delete the account from the database 

10. The system notifies administrator the account has been deleted.

Scenario: Administrator modifies a member account 

1. Administrator connects to the university’s homepage.

2. Administrator enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter administrator’s homepage

5. Administrator selects the ‘update account’ button

6. The system prompts administrator to enter following data:

· member ID 

7. Administrator enters required data

8. The system verifies the data.

9. The system show the member information

10. Administrator update related member information

11. Administrator click the save button

12. System verifies the information

13. System writes the new information to the database

14. System notifies administrator the account has been updated 

Scenario: Administrator enable/disable a web page

1. Administrator connects to the university’s homepage.

2. Administrator enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter administrator’s homepage

5. Administrator selects the ‘web page maintain’ button

6. The system shows the entire web page list 

7. Administrator selects the web page

8. Administrator enable/disable this web page

9. The system promotes the administrator to confirm

10. Administrator click the ‘confirm’ button

11. System enables/disables the web page

12. System notifies administrator the web page has been enabled/disabled 

Scenario: Administrator post notes

1. Administrator connects to the university’s homepage.

2. Administrator enters his/her user name and password through a dialogue box to login the system. 

3. The system verifies his/her user name and password

4. Enter administrator’s homepage

5. Administrator selects the ‘note post’ button

6. A text editor has popped up

7. Administrator typed the notes

8. Administrator ‘post’ button

9. System post the notes to the web page

10. System notifies administrator the notes has been posted

1.4 Non-functional specifications

1.4.1 Preface

Unlike functional requirements, which explain what the system will do, non-functional requirements (also called constraints) constrain the behavior in terms of safety, reliability, budget, schedule, and more. Since system architecture affects the performance, robustness, distributability and maintainability of a system, the particular style and structure chosen for an application may depend on the non-functional system requirements. Therefore, some constraints usually narrow our selection of language, platform, or implementation techniques or tools.

Non-functional Requirements are also elicited from the customer in a formal, careful way. Based on the project requirements and the interactive discussion with users and the system owner SIWU, the non-functional requirements of SIWU web registration system are specified.

1.4.2 System goal: 

SIWU web based Graduate Registration System (GRS) should be easy to use by experienced registrar, student, GPD, professor, and other end users, and finally should be able to replace the current paper-based registration system.

1.4.3 Verifiable non-functional requirements: 

Experienced registrars or professors as well as GPDs shall be able to use all the system functions after a total of one hours training. In addition, they should become seasoned users after two-week practice.

Traditionally, non-functional requirements are classified into three different types: product requirements, organizational requirements, and external requirements.

1 Product non-functional requirements

2 Hardware and software requirements

SIWU GRS system should be run on the following hardware and software environment in order to meet reliability, performance and security requirements:

Server:

Dedicated server with RAID 5, minimum 20 GB hard disk

minimum 256 M memory 

Intel PIII at 600 MHz or equivalent CPU

Platform: Microsoft Windows NT4.0 with Option Pack (including IIS server 4.0) and service pack 5 or later, or Windows 2000 Server (including IIS server 5.0)

DBMS: Microsoft SQL Server 6.5 or higher

Client:

Intel Pentium CPU or higher

Minimum 16 M Ram

Internet connection speed: 26.4 Kbps or higher

Operating system: any OS supporting web browser

Web  Browser: Netscape Communicator 3.x or Microsoft Internet Explorer 4.x

1.4.4  Usability requirements:

The graphic user interface is designed to be easy use by people with basic computer knowledge and skills.

1.4.5 Performance requirements

The system has the capability of handling 100 simultaneous accesses. Once button clicked, the maximum response time less than 4 seconds in high volume periods.

Reliability/Robustness Requirements

the downtime should be less than 2 days per year. the system could keep operating for at least 1 hour after power supply failure by automatically switch to UPS.

1.4.6 Organizational non-functional requirements

Delivery Requirement

The complete system (including documentation) shall be installed and handed over to customer by April 30, 2001.

Implementation requirement

The system shall be implemented using Microsoft Active Server Page technology (VBScript, HTML, etc.), Windows NT/2000 Server platform, and SQL Server Database Management System. Feasibility check should be done after every software development life cycle.

Standards requirements

The system shall meet the existing SIWU’s acceptance criteria for new systems. Testing tools and testing method will meet both SIWU and our current standards.

1.4.7 External non-functional requirement

Interoperability requirement:

This system must have the interoperability with SIWU’s existing legacy computer systems.

Ethical requirement:

All the functions and interfaces are customized to meet SIWU’s social and ethical environment. The system shall be acceptable to its users and general public.

Legislative requirement

 The system are designed to operate within any Canadian law and SIWU’ policies and regulations as well as the customer privacy law. 

Code Ownership

The system shall be delivered to SIWU with complete package, including all the software and documentation specified in the client-developer contract. In addition, SIWU owns the property of all the codes related to the system, any other party including developer cannot sell the system to others or use them somewhere else without the written authorization from SIWU.

2 Architecture Design

2.1 Design Rationale 

As the software requirements document (SRD) specified, the WGRS is designed to provide the following web-based services including: Public users view university general information & apply for admissions on line, Students (for current students), Faculties (for faculty members), Graduate Program Directors, Administrations, Monitor, Course Scheduling,  Classroom Schedules and Standard Reports. The WGRS should be accessible with different privilege levels to different classes of users and with the characteristics of user interactivity and friendliness. Therefore the WGRS system should consist of the following subsystems:

· User Interface: The UI is implemented in HTML. It allows the general users to interact with the WGRS system through the web using an internet browser, and also some authorized user to use the system directly through their personal computer with different privileges by inputs (mouse clicks, keyboard strokes etc.). 

· Event Handler: Implemented in Modules and Components. It is used to handle the user requests from user inputs.

· Web Server (PWS, IIS): To receive information from Event Handler and make connection of the user interface with the ODBC.

· Database Connection (ODBC): Connect Web Server to Database. Most of web servers cannot access database directly. ODBC used for the web server to access database.

· Database: Store the whole information of the WGRS system. Receive the SQL queries and response.

All functional requirements in SRD are included in above subsystems. For most of the subsystems the security is achieved by the verification of the user names and passwords at different levels. It is implemented in common object module login. 

The application  software used in the different subsystems in our design can be listed as follows:

·   Database: Microsoft SQL server and Access.

·   Browser: Microsoft Internet Explorer/Netscape.

·   Programming Environment : Microsoft Visual InterDev.

·   Web Server: Internet Information System on Windows NT.

·   Database Connection: ODBC used to connect the web server to database server.

·   User Interface: HTML.

2.2 System Architecture

[image: image10.jpg]
Figure 2.1 System Architecture Diagram of WGRS

The WGRS system is an event-driven interactive system. Figure 1 shows the system architecture diagram and the subsystems of WGRS. 

The User Interface (UI) and the Event Handler (EH) are two subsystems that are mainly considered in the WGRS system software design. The others are handled by using the existing commercial software. The UI connects between the users and the Event Handler in the system. The EH handles all user inputs as driven events and responds to them. The EH subsystem consists of 5 functional modules and 8 common object modules. 

5 functional modules includes: 

   Student, Faculty, GPD, Administration and Monitor;

8 common object modules: 

   Login, Course, Section, Schedule, Classroom, Registration, StudentInfo and EmployeeInfo.

The 5 functional modules interact through the 8 common modules. Their relationship is illustrated as Figure 2.
[image: image11.jpg]
Figure 2.2. Relations among the modules

2.3 Object-oriented Models

The WGRS of SIWU is composed of 5 modules for user-system interactions. The 5 modules are functionally supported by the 8 common object modules (COMs). Follows are the diagrams for 5 modules, while their supportive 8 COMs are presented as interface specification and definition in the following 2 chapters. 

2.3.1    Module Student

The student module consists of  4 objects which are identification, StudPersInfo, StudAcadInfo, StudRegistration and StudSchedule. The entries of the objects are protected by COM login, which is invoked to interact with used for prompting user ID and password. 

[image: image12.jpg]
[image: image13.png][image: image14.jpg]






Figure 2.3  Student Class Diagram
2.3.2    Module Faculty

The faculty module consists of  the following five objects which are represented as the following diagram. The access to the objects are protected by the COM login. The operations are supported by invoking COMs EmployeeInfo, Course etc. 


Figure 2.4 Faculty Class Diagram
2.3.3    Module GPD

The Graduate Program Director (GPD) module has 4 objects as described in the following diagram. The functions of the 4 objects listed are supported by the total 8 COMs. The objects is controlled by login COM for access.





Figure 2.5 GPD Class Diagram

2.3.4    Module Administrator

The administrator module consists the following  six objects. It has the full power of the functions of all the other 4 modules. All the objects are functionally supported by the underlying 8 COMs including course, classroom, section, schedule, register, studentInfo and employeeInfo. The access of the 6 objects are controlled by COM login interact with user by requesting user ID and password.





Figure 2.6 Administration Class Diagram

2.3.5    Module Monitor

The module Monitor is made up of two objects (a. ManageAccount; b. MaintainWebPage). Its main tasks are to maintain user accounts and to play a role as a web master. The functions of 8 COMs are invoked by the module to perform its functionality. Montor is also provided a used ID and a password to access the objects.





Figure 2.7 Monitor Class Diagram

2.4 System Topology

Our system topology or system organization is a three-layer structure detailed as following:

The top layer, which is divided into tow subsystems: the User Interface and the event Handler.

The middle layer consisting of Web Browser, Web Server, COM, ODBC, and Database.

The bottom layer---the operating system.



Figure 2.8 Three-layered Structure of the System Topology

3 Module Interface Specification (MIS)

3.1 User interface subsystem

The user interface subsystem is designed and implemented in HTML. The functionality and UC interactions are achieved by invoke corresponding ASP commands in the 5 modules outlined in the above chapter. The general information of the university and all the other information available for public users are posted and linked by HTML. This part is quite straight forward and easy to understand.

3.2 Event Handler Subsystem

The main functionality of the event handler subsystem is processing the user requests and mapping the user input to the output. The subsystem consists of five modules which are Student, Faculty, GPD, Administrator and Monitor. They invokes the functions provided by the underneath eight common object modules (COMs). The COMs are Login, Register, Course, Schedule, Classroom, Section, StudentInfo, EmployeeInfo. The following sections describe the modules one at a time.

3.2.1    Five Main Modules

3.2.1.1    Module Student
Collaborator: COM StudentInfo, COM Login;

Database involved: Student, LoginInfo, Course, Exam, Payment, Take

class StudPersInfo()

{

  Attributes: 

         int  SID;

         text Lpassword;

         link displayPersonalInfo();

         link updatePersonalInfo();

  Operation:

         ViewPersInfo();

         UpdatePersInfo();

}

class StudAcadInfo()

{

  Attributes:

         int  SID;

         text Lpassword;

         link displayAcademicInfo();

  Operation:

         ViewAcadInfo();

}

Class StudRegistration()

{

  Attributes:

         int  SID, CID;

         text Lpassword;

         link addCourse();

         link dropCourse();

         link viewCourse();  // add function viewCourse() in COM StudentInfo

  Operation:

         AddCourse();

         DropCourse();

         CourseView();  // add CourseView() in class StudRegistration, so student can

                        // know how many courses he/she has completed.

}

class StudSchedule()

{

  Attributes:

         int  SID, CID, ECID, ESEName, EYear, ETID, ECRID;

         text Lpassword;

         link displayExamSchedule();

         link displayCourseSchedule();

  Operation: 

         viewExamSche();

         viewCourSche();

}        

3.2.1.2    Module Faculty

Collaborator: Scheduling, Standard Reports

Database involved: Student, Faculty, Course, Administration

Class Faculty ()

{



Attributes:




text FID




text Password




text Term




text Year




text CourseID




text Section



Operations :





DisplayTeachingSchedule ();




DisplayClassList ();





DisplayExamSchedule ();





PostStudentGrade ();




ViewPersonalInfo ();





UpdatePersonalInfo();

}

3.2.1.3    Module GPD

Database involved : LogInfo,Section,Program,Term,Courses, Student, Faculty

Class ModifyCourse()

{

          Attributes:


         text CourseID;





  text CourseName; 

           text Year;





  text Term;

           text Section;


Operation:

void     isValid () ;

void
Add_Course();

void
Delete_Course ();

void
Update_Course ();

void
Displaay ();

}

Class  ViewCourseRegInfo()

{

Attributes:

text CourseID;



text SID; 

text SEName;



text TID;

text Tyear;



Operation:

void     isValid () ;

void
FindStudent ();

void
Display ();

}

Class ViewProfInfo()

{

Attributes:

                  text Professor Information;



text Course Schedule;







Operation:

Void
Displaay ();

Void   ViewList() ;

}

Class  ViewStudAcadInfo()

{

Attributes:

text   CourseID;



text   SID; 

text   Term;



text   Section;

text   Grad;





Operation:

void    isValid () ;

void
Display ();

}

3.2.1.4    Module Administrator

Collaborator: Login, Section, Classroom, Course, EmployeeInfo, Scheduling

Database involved: Student, Faculty, Course, Administration

Class Administration()

{


attributes:

Link CourseUpdate

Link StudentUpdate

Link FacultyUpdate

Link  StaffUpdate

Operations:

Display();

StudentInfo.View();

StudentInfo.Update();

StudentInfo.Add();
EmployeeInfo.View();

EmployeeInfo.Update();

EmployeeInfo.Add();

EmployeeInfo.Delete ();

Course.ViewCourse();

Course.Update();

Course.Add();

Course.Delete();

Registration.RegisterCourse();

Registration.Validation();

Registration.DropCourse();

Registration.ViewClassList();

Classroom.AddClassroom();

Classroom.DeleteClassroom();

Classroom.ViewList( ); 
Schedule.CourseSechdule();

Schedule.ExamSchedule();

Schedule.SechduleAlgoritham( );
Section.ViewSection();

Section.OpenSection();

Section.CancelSection();

Section.UpdateSection();

void ViewAccount();

void UpdateAccount();

void Delete();

void SuspendAccount();

};

3.2.1.5    Module Monitor

Class Monitor()

{

           Class Specification: 

            This class is to provide the monitor with several utility tools like web pages management, database management and account management. 

            Attributes:

Text 

UserID, Password;

Long    
SecurityLevel;

Text

DatabaseName;

Text

PageName;

Operations:
Bool

GetAccountInfo(UserID, Password, SecurityLeve);

Bool

AddAccount(UserID, Password, SecurityLeve);

Bool

DeleteAccount(UserID);

Bool

UpdateAccountInfo(UserID, Password, SecurityLeve);

Bool

ListAllDatabases();

Bool

EnableDatabaseAccess(DatabaseNames[],  nableAccess);

Bool

DatabaseMaintence(DatabaseName);

Bool

ListAllWebPages();

Bool

EnableWebPageAccess(WebPageNames[], enableAccess);

Bool

EditWebPage(WebPageName);

}

3.2.2 Eight Common Object Modules

3.2.2.1    COM Login

Class Login() 

{

Class Specification:

The class provides function to verify login info and retrieve access level information.

Database table involved: 

Logininfo, Memo, Student, Employee

Attributes:

text userName, password, accessLevel

Operations:

Boolean setuserName(Text tmpuserName );

// Data member “userName” is assigned before invoking Function validation()

Boolean setpassword(Text tmppassword );

// Data member “password” is assigned before invoking Function validation()
Boolean validation();


Boolean AddLogin();

Boolean UpdatePassword();

Boolean UpdateAccessLevel();

Boolean EandDWebAccount();

Boolean AddMemo();

Boolean ViewMemo()

}

3.2.2.2     COM Registration

Class Registration()

{

Class Specification:

The class provides basic function to register/drop a course.

Database table involved: 

Student, Take, Program, Consist_of, Prerequest, Course, Term, Time_Slot, Section

Attributes:

integer counter 

//Prerequest information   

text PreCID 

//student academic information

text TSID, TsecID, grade, status

date regDate, dropDate 

//Section Information

integer SmaxEnrolled 

text SCID, SYear, STID 

//Time_Slot information

integer Day_of_week, Day_of_week2 

Date Ftime, Ttime, Ftime2, Ttime2 

Operations:

//Data members are assigned after invoking other Functions.

// Get student academic information

Text getTSID()

Text getTSecID()

Text getGrade()

Text getregDate()

Text getdropDate()

Text getstatus()

//Get section Information

Text getSYear()

Text getSTID()

Text getcounter()

//Data members are assigned before invoking other Functions.
//Set student  academic information

Boolean setTSID(Text tmpTSID )

Boolean setTSecID(Text tmpTSecID )

Boolean setgrade(Text tmpgrade )

Boolean setregDate(Text tmpregDate )

Boolean setdropDate(Text tmpdropDate )

Boolean setstatus(Text tmpstatus )

//Set Prerequest information

Boolean setpreCID(Text tmppreCID )

//Set section Information

Boolean setSCID(Text tmpSCID )

Boolean setSYear(Text tmpSYear )

Boolean setSTID(Text tmpSTID )

Boolean setSMaxEnrolled(Text tmpSMaxEnrolled As Integer)

Boolean setcounter(Text tmpcounter As Integer)

//Set time_slot  information

Boolean setDay_of_week(Text tmpDay_of_week )

Boolean setFtime(Text tmpFtime As Date)

Boolean setTtime(Text tmpTtime As Date)

Boolean setDay_of_week2(Text tmpDay_of_week2 )

Boolean setFtime2(Text tmpFtime2 As Date)

Boolean setTtime2(Text tmpTtime2 As Date)

Boolean CheckCapacity() 

Boolean CheckPrequisite() 

Boolean CheckCourseinProgram() 

Boolean CheckSchedule() 

Boolean CheckOverTaken() 

Boolean RegCourse() 

Boolean LastRegistration() 

Boolean ViewClassList()

Boolean DropCourse() 

Boolean LateDrop() 

}

3.2.2.3    COM StudentInfo

Class StudentInfo()

{
Class Specification:

The class provides basic function to manage student personal and academic information.

Database table involved: 

Student, Take

Attributes: 
// student personal information

text

SID, firstName, lastName, address, city, province, postCode, phone 

Hyperlink
email  

text
citizenship, SIN, sex, sstatus, superID, enrolledYear, enrolledTerm, proID 

// student academic information

text

TSID, SecID, status, objectRS 

Date

DOB, dropDate

Operations:

//Data members are assigned after invoking other Functions.

// Get student personal information

Text getSID()

Text getfirstName()

Text getlastName()

Date getDOB()

Text getaddress()

Text getcity()

Text getprovince()

Text getpostCode()

Text getphone()

hyperlink getemail()

Text getcitizenship()

Text getSIN()

Text getsex()

Text getsstatus()

Text getsuperID()

Text getenrolledYear()

Text getenrolledTerm()

Text getproID()

//Get student academic information

Text getTSID()

Text getSecID()

Text getGrade()
Date getregDate()

Date getdropDate()

Text getstatus()

//Data members are assigned before invoking other Functions.
//Set student personal information

Boolean setSID(Text tmpSID )

Boolean setfirstName(Text tmpfirstName )

Boolean setlastName(Text tmplastName )

Boolean setDOB(Text tmpDOB )

Boolean setaddress(Text tmpaddress )

Boolean setcity(Text tmpcity )

Boolean setprovince(Text tmpprovince )

Boolean setpostCode(Text tmppostCode )

Boolean setphone(Text tmpphone )

Boolean setemail(Text tmpemail )

Boolean setcitizenship(Text tmpcitizenship )

Boolean setSIN(Text tmpSIN )

Boolean setsex(Text tmpsex )

Boolean setsstatus(Text tmpsstatus )

Boolean setsuperID(Text tmpsuperID )

Boolean setenrolledYear(Text tmpenrolledYear )

Boolean setenrolledTerm(Text tmpenrolledTerm )

Boolean setproID(Text tmpproID )

//Set student academic information

Boolean setTSID(Text tmpTSID )

Boolean setSecID(Text tmpSecID )

Boolean setgrade(Text tmpgrade )

Boolean setregDate(Text tmpregDate )

Boolean setdropDate(Text tmpdropDate )

Boolean setstatus(Text tmpstatus )

//operation on PersonalInfo

Boolean AddPersInfo()

Boolean UpdatePersInfo()

Boolean ViewPersInfo()

Boolean DeletePersInfo()

Boolean AddAcadInfo()

Boolean UpdateAcadInfo()

Boolean ViewAcadInfo()

Boolean DeleteAcadInfo()

Boolean AddPersInfo() 

Boolean UpdatePersInfo()  

Boolean ViewPersInfo() 

Boolean DeletePersInfo()

Boolean AddAcadInfo()

Boolean UpdateAcadInfo()

Boolean ViewAcadInfo()

Boolean DeleteAcadInfo()
}

3.2.2.4    COM Schedule

Class Scheduling()

{

Class Specification: 

This class provides a course-scheduling algorithm and an exam-scheduling algorithm, and also the scheduling information to the whole system.

Attributes:


Text 

SectionID;


Time

DayOfWeek, StartTime, EndTime;


Time

ExamDay, ExamStartTime, ExamEndTime;


Long

LecClassRoomID, ExamClassRoomID;


Operations:


Bool

ScheduleCourse(SectionID);


Bool

AutoScheduleCourses(Year, Term);


Bool

GetCourseScheduleInfo(SectionID);


Bool

ScheduleExam(SectionID);


Bool

AutoScheduleExams(Year, Term);


Bool

GetExamScheduleInfo(SectionID);

}

3.2.2.5    COM EmployeeInfo

//Component Interface Specification

//Class "employee"

//The component provides basic functionalities to manipulate employee information

//Data base involved: employee
class Employee() 

{

private:


int id;



// employee ID


//persoanl identification information


string first_name;

// first name


string last_name;

// last name


date DOB



// date of birth


char sex


//address information


string address, city, province, postcode, email, phone;


//personal information as employee


date since


string position;


int salary;


string department;


string research;


//connection information


string strConnect;

public:



//constructor


void Employee(int emp_id, string connect);


// Operation on database


int GetEmployee();
//get information of the employee


int AddEmployee();
// add a employee


int DeleteEmployee(); // delete a employee


int UpdateEmployee(); //update the employee


//facilities for class employee


// get all professor who are involved in the program ID 


// and their related teaching sections


recordSet ProgEmployee(string prog_id, string year="", string term="");



// get all employee who work for the department


recordSet DepEmployee(int dep_id);

}

3.2.2.6    COM Course

//Component Interface Specification

//Class "course"

//The component provides basic functionalities to manipulate courses information

//Data base involved: course

class Course()

{

private:


int id;


// course ID


string name;
// course name


int credit;

// course credit


string status;
// course status


string did;

// id of the department who offers the course


string strConnect; 
//connection information

public:



//constructor


void Course(int Cid, string connect );


void Course(int Cid, string Cname, int Ccredit, Cstatus, string Cdid, string connect );




// Operation on database


int GetCourse();
//get information of the course


int AddCourse();
// add a course


int DeleteCourse(); // delete a course


int UpdateCourse(); //update the course


//facilities for class course


// get prerequiste courses


recordSet PreRequestCourse();



// get all courses of the program ID


recordSet ProgCourse(string prog_id);



// get all courses teached by the professor prog_id


recordSet ProfCourse(int prof_id);


// get all courses taken by the student sid


recordSet StudentTakenCourse(int sid);


}

3.2.2.7    COM Section

//Component Interface Specification

//Class "section"

//The component provides basic functionalities to manipulate section information

//Data base involved: section, TimeSlot, ClassRoom

class Section()

{

private:


int id;




// section ID


string course_name;

// course name


string section_name;
// course name


string term;


// term of this section


int year;


// year of this section


int min_enrolled;

//minimum number of students for this section


int max_enrolled;

//maximum number of students for this section


int capacity;


//nomber of students enrolled


//section schedule information


string day_of_week;


time start_time;


time end_time;


string class_room;


//connection information


string strConnect;

public:



//constructor


void Section(int sect_id, string connect );


void Section(int sect_id, string Sname, string Sterm, int Syear, string connect);




// Operation on database


int GetSection();
//get information of the section


int AddSection();
// add a section


int DeleteSection(); // delete a section


int UpdateSection(); //update the section


// get all sections offered by the program ID


recordSet ProgSection(string prog_id, string year="", string term="");



// get all sections teached by the professor prog_id


recordSet ProfSection(int prof_id, string year="", string term="");


// get all sections taken by the student sid


recordSet StudentTakingSection(int sid, string year="", string term="");

}

3.2.2.8    COM Classroom

        class Schedule

{

                Protect:

                   char *Courceid;

                   char *ProfessorName;

                   Time  fromtime;

                   Time  endtiime;StudentList *SL; // I suppose someone will make this class

                 public:

                 Schedule(char *cid, char *pn, Time ft, Time et);

                 ~Schedule();

                 void DisplayStudentList();

                  char *GetCourse() { return CourceId; }

                  char *GetProfessor() { return ProfessorName;}

                  Time& GetFrom(){ return fromtime;}

                  Time& GetEnd(){ return endtime;}

                 void AddStudentToList(Student aa);

             }

3.3 Dynamic Model

3.3.1 Faculty state diagram


[image: image3.png]
Figure 3.1 State Diagram of Module Faculty

4 Internal Module Description (IMD)

4.1 Five Main Modules

4.1.1 Module Student

class StudPersInfo

  void ViewPersInfo(SID, Lpassword)

  {

    call COM login 

    If find (SID, Lpassword) in DB Then

       call COM StudentInfo.displayPersonalInfo

    Else

       display error message

    End If

  }

   void UpdatePersInfo(SID, Lpassword)

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.updatePersonalInfo

    Else

       display error message

    End If 

  }

class StudAcadInfo

   void ViewAcadInfo(SID, Lpassword)

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.displayAcademicInfo

    Else

       display error message

    End If 

  }

Class StudRegistration

   void AddCourse(SID, Lpassword, CID);

  {

    call COM login 

    If find (SID, Lpassword) in DB Then

       call COM StudentInfo.addCourse()

    Else

       display error message

    End If 

  }    

   void DropCourse(SID, Lpassword, CID);

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.dropCourse

    Else

       display error message

    End If 

  }

   void CourseView(SID, Lpassword)

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.viewCourse

    Else

       display error message

    End If 

  }

class StudSchedule

  void viewExamSche(SID, Lpassword, CID, ECID, ESEName, EYear, ETID, ECRID)

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.displayExamSchedule

    Else

       display error message

    End If 

  }

  void viewCourSche(SID, Lpassword, CID, ECID, ESEName, EYear, ETID, ECRID)

  {

    call COM login 

    If Find (SID, Lpassword) in DB Then

       call COM StudentInfo.displayCourseSchedule

    Else

       display error message

    End If 

   }

4.1.2 Module Faculty

Class TeachingSchedule

//display all the teaching schedules of the professor

DisplayTeachingSchedule () {

Create an object of class Section from the component Proj554.dll

Display a dropdown list containing years when professor has taught courses

Display a combox list containing terms when professor has taught courses

Select a term and a year

Call objSection.ProfSection(Term, Year)

Display return recordset

If (want to see another term or year) then

Re-select a term and a year from dropdown list

Call objSection.ProfSection(Term, Year)

Display return recordset

End if

}

//display the student list of the classes taught by the professor





void DisplayClassList ();


{

Create an object of class Section from the component Proj554.dll

Display a dropdown list containing courses that professor has taught

Display a dropdown list containing sections that professor has taught 

Display a dropdown list containing years when professor has taught courses

Display a combox list containing terms when professor has taught courses

Select a course, a section, a term and a year

Call objSection. SectionStudentsList (CourseID, Section, Term, Year )


     Display return recordset

If (want to see anothet class list) then


     Re- select a course, a section, a term and a year

Call objSection.ProfSection(CourseID, Section, Term, Year)


     Display return recordset

End if

}

//display all the exam schedule of the classes taught by the professor

DisplayExamSchedule ();


{

Create an object of class Section from the component Proj554.dll

Display a dropdown list containing years when professor has taught courses

Display a combox list containing terms when professor has taught courses

Select a term and a year

Call objSection. ProfSectionExam( Term, Year)

Display return recordset

If (want to see another term or year) then


Re-select a term and a year from dropdown list


Call objSection. ProfSectionExam( Term, Year)



Display return recordset

End if

}

//post the student grades of the class taught by the professor

PostStudentGrade () 

{

Create an object of class Section from the component Proj554.dll

Display a dropdown list containing courses that professor has taught

Display a dropdown list containing sections that professor has taught 


Display a dropdown list containing years when professor has taught courses


Display a combox list containing terms when professor has taught courses


Select a course, a section, a term and a year

Call objSection.SectionStudentsGrade (CourseID, Section, Term, Year )


Display return recordset


Post or update students grades


Submit postGrade

}

//Display professor personal information

ViewPersonalInfo ()

{

 Create an object of class EmployeeInfo from the component Proj554.dll


Submit viewPersonalInfo

  Call objEmp.GetEmployee ( )


Display the personal information stored in the object objEmp


If ( want to update his personal information)



Update personal information


Submit update


Call objEmp.updateEmpInfo()

End if

}

//Display professor personal information

UpdatePersonalInfo();
{

Create an object of class EmployeeInfo from the component Proj554.dll

Call objEmp.GetEmployee ( )


Display the personal information stored in the object objEmp


Update personal information

Submit update

Call objEmp.updateEmpInfo()

Display updated persnal information

}

4.1.3 Module GPD

class GPD: public Faculty

{

   public:

GPD(Connection con);

void dispalyProfInfo(PrintWriter out); 


void displayStudentAcadInfo(PrintWriter out);


void  DisplayCourseRegInfo(Student, PrintWriter );

void  ModifyCourse(Course, PrintWriter);

 };

GPD::GPD(Statement statement)

{



stmt=statement;

}

ViewProfInfo Class

{

public void FindProfpInfo();

public void Display();

public void FindProfTeachSchedule();

public void ViewList();


};


 void FindProfpInfo(int *FID)

{


open database;

while not end of Faculty table do

check the record;

if FID is matched

return record;

end if

move to the next record;

end while

error message;

exit module;

 }

 void Display(int FID)

{

 
Display record=find( int FID);

}

 void FindProfTeachSchedule(int FID,char*CID,Cname)

{

 
open database;


find all records for specified CourseID,Term,Year, Section, 

Course is assigned by FID;

if no records found


 
error message;

exit module;


else



return retrieved records;

        end if


}

void ViewList()

{

Display record=find( int FID, int CID, char Term,char Year, char Section);

}


ModifyCourse Class

{

Bool isValid();

public void Add();

public void Delete();

public void Update();

public void Display();


};

bool isValid()

{

open database;

check  all integrity constrains on the Course table;


if  not all constrains are satisfied 



error message;

return false;


else 

return true;


end if

}

void Add(int CID, char*Cname,char*Year,char*Term, char*Section)

{

isValid is ture;

if not find(int CID, char Cname, char Year, char Term, char Section);



return error message;


else



open database;



add the course;



return success message;


end if

}

void Delete()

{

isValid is ture;

if not find(int CID, char Cname, char Year, char Term, char Section);



return error message;


else



open database;



delete the course;



return success message;


end if

}

void Update()

{

isValid is ture;

open database;

if not find(int CID, char Cname, char Year, char Term, char Section);



return error message;


else



update the course;



return success message;


end if

}

void Display(int CID)

{

 
Display record=find(int CID, char Cname, char Year, char Term, char Section);

}

ViewCourseRegInfo Class

{

Bool isValid();

public void findStudent();

public void Display();


};

Bool isValid(int CID, int SCID, int TID, char SEname, char Year)

{

if CID=”” or SCID=”” or TID=”” or SEname=””, or Year=””

error message;



return false;


end if


open database;


check CID,  and SCID and TID;


if not match



error message;



return false;


end if


return true;

)

void findStudent()

{

isValid is ture;

open Student table;

if  not find student information



error message;

return false;


else 

return true;


end if

}

void Display(int FID)

{

 
Display record=find( int SID,char SfirstName,char SlastName);

}

ViewStudAcadInfo Class{

Bool isValid();

public void find();

public void Display();


};

Bool isValid(int CID, int SID, int TID)

{

if CID=”” and SID=”” 

error message;



return false;


end if


open database;


check CID,  and SID and TID;


if not match



error message;



return false;


end if


return true;

)

void find(int CID, int SID, int TID ,char Term, char Section, char Tyear, char Grad)

{

input the CID,SID,TID;

connect with database

if not match



error message;



return false;

end if



return true;

}

void Display()

{

Display record=find(int CID, int SID, int TID ,char Term, char Section, char Tyear, char Grad);

}

4.1.4 Module Administrator

Class CourseUpdate

Void FindCourse(CID, CsecID)

  {

    Display textedit box “Course Search”

    Input the course ID number 

    Input the  course section ID number

    Press the button ‘Find’

    Connect with database COURSE

    Sql search in database COURSE

    If(COURSE.CID== CID AND COURSE.CsecID == CsecID )

      Write( COURSE.CID, COURSE.CName, COURSE.CsecID,   COURSE.Cinstructor, COURSE.Cstatus, COURSE.Croom)

   Else

        Write( “course doesn’t exist in database” );

  Disconnect with database;

 }

void AddCourse()

{

  display textedit box “ Course Id”, “Course CsecID”, “Course     credit”,”CInstructor”, Cstatus, CRoom

  Input the Course ID, Course Section ID, Credit, Cinstructor, Croom

 //CStatus will automatically appear ‘open’

press button ‘Submit’

connect with database

sql will fill in database COURSE

DISCONNECT with database

}

void AddSection(CID)

{ display textedit box “CourseID” , “Csection”, “Cinstructor”, “Cstatus”, Croom

//By default ,Cstatus should appear as ‘open’, CID will appear in box, Ccredit will be appearing by default, Cname is in box.

Input Course Section, Instructor , Croom

Press the button ‘submit’

Connect with database.

Sql will fill in the database COURSE

Disconnect with database

}

void DeleteSection(CID, CsectionID)

{

  display textedit box “Course Id and Course Section”

  input course Id and Course Section Id

  if(CID != NULL)

    {

      press button delete

      connect with database

      sql search the database course

     if(CID = COURSE.CID and  Csection = COURSE.CID)

        DELETE THE RECORD

     Else

        Write( error message)

    }

 else 

    write(error message);

 Disconnect with database.

}

void UpdateCourse(CID, CsecID)

  {

    press ‘update’;

    display intermediate textbox ‘CID’ and ‘CsecId’

     if(Course.CID == CID AND COURSE.CsecID == CsecID )

        {

           input all required fields 

           connect with database

           sql will do as

           COURSE.CID = CID, COURSE.CsecId = CsecID

           Course.Cname = Cname, COURSE.Credit = Credit           

           Course.CInstructor = CInstructor

           Course.Cstatus = Cstatus

           Course.Croom = Croom

        }

     else 

          write(“The course does not exist” );

       disconnect with database;

}

Class FacultyUpdate

Bool FindFacultyMember(FID)

  {

    Open DB

    While(not end of the Faculty table)

        { check the record 

           if(Faculty.FID = FID )

              { 

                display record 

                 return True

               }

           Next Record

        }

Display “Not Found” message

Return False

}

void UpdateFacultyRecord(FID)

{

  input FID

  if(FindFaculty(FID) )

    {

      Input(new_address, new_phone, new-Email, new_citizenship, new_ResearchInterest)

      Open DB

      Set  Faculty.Faddress = new_address

             Faculty.Fphone = new_phone

             Faculty.Email = new_Email

             Faculty.Citizenship = new_citizenship

             Faculty.ResearchInterest = new_researchInterest

    }

Class StudentUpdate

Bool  FindStudent(SID)

  { Open DB

     while(not end of the student table)

         { check the record

            if(Student.SID = =SID)

              { Display record

                 Return True

              }

            Next Record

        }

     Display “Not Found” message

     Return False

}

void UpdateStudentRecord(SID)

  {

     Enter student id

    if( FindStudent(SID) )

      { 

         //administrator can make proper changes as follows

         Input(new_address, new_phone, new_email, new_GPA, new_citizenship, new_status) in the form.

        Open DB

        Set Applicant.Address = new_address  

              Applicant.Phone = new_phone

              Applicant.Citizenship = new_citizenship.

              Applicant.Stutus = new_status

       }

   close DB

}

Class StaffUpDate

Bool FindStaff(StID)

{

   Open DB

   While(not end of the staff table )

       {

         check the record

         if(staff.StId == StId )

           {

               Display record

               Return True

           }

        Next Record

     }

   Display “Not Found “ message

   Return False

}

void UpdateStaff(StID)

  {

     Enter staff id

    if( FindStaff(StID) )

      { 

         //administrator can make proper changes as follows

         Input(new_address,new_phone,new_email,new_citizenship,new_designatin) in the form.

        Open DB

        Set Staff.Address = new_address  

              Staff.Phone = new_phone

              Staff.Citizenship = new_citizenship.

              Staff.email = new_email

               Staff.Designation = Designation

       }

   close DB

}

4.1.5  Module Monitor

Bool GetAccountInfo(UserID, Password, SecurityLeve);

{

Functional Specification: 

This function is to get user account information.

Parameters:



UserID


input UserID 

Password


output user password

SecurityLeve
output user securitylevel

Return Values:


True


Succeed to get the info


False


Failed to get the info

Assumptions:


None

Psyudo Code: 


Open DB


Check the Login table; to see if UserID exists


If so



get Password and Security from the Login table

Close DB


Return True


Else

Close DB



Return False

}

Bool AddAccount (UserID, Password, SecurityLeve);

{

Functional Specification: 

This function is to add a new user account.

Parameters:



UserID


input UserID 

Password


input user password

SecurityLeve
input user securitylevel

Return Values:


True


Succeed to create new account


False


Failed to create new account

Assumptions:


None

Psyudo Code: 


Open DB


Check the Login table; to see if UserID already exists


If so

Close DB


Return False


Else



Add a new record with the input UserID, Password and Security into the Login table

Close DB



Return True

}

Bool DeletAccount (UserID);

{

Functional Specification: 

This function is to delete an user account.

Parameters:



UserID


input UserID 

Return Values:


True


Succeed to delete the account


False


Failed to delete the account

Assumptions:


None

Psyudo Code: 


Open DB


Check the Login table; to see if UserID exists


If so



Delete the record in the Login table

Close DB



Return True


Else

Close DB


Return False

}

Bool AutoScheduleCourses(Year, Term)

{

Functional Specification: 

This function is to provide an automatic courses-scheduling facility. We will save the schedule info for those successfully scheduled sections, and leave those failed scheduled sections as un-scheduled. 

Parameters:



Year


only schedule those courses in this year and


Term


this term

Return Values:


True


Succeed to schedule all courses


False


Failed to schedule all courses

Assumptions:


To simplize our implementation, we assume that each course only contains one lecture a week.

Psyudo Code: 


For each course in the Year and Term 



Get the SectionID from the Section table



Call ScheduleCourse(SectionID)



If Failed




Put the SectionID into a log file


Next


If all courses are successfully to be scheduled



Put an msg as “Not all courses are successfully scheduled.”



Return False


Else



Return True

}

Bool UpdateAccountInfo(UserID, Password, SecurityLeve);

{

Functional Specification: 

This function is to update user account information.

Parameters:



UserID


input UserID 

Password


input user password

SecurityLeve
input user securitylevel

Return Values:


True


Succeed to update the info


False


Failed to update the info

Assumptions:


None

Psyudo Code: 


Open DB


Check the Login table; to see if UserID exists


If so



Update the Password and Security in the Login table

Close DB


Return True


Else

Close DB



Return False

}

Bool ListAllDatabases(DatabaseNames[], NumOfDatabases);

{

Functional Specification: 

This function is to provide all databases name.

Parameters:



Text
DatabaseNames[]

output

INT
NumOfDatabases

output 

Return Values:


True


Succeed to get all database name


False


Failed to get all database name

Assumptions:


None

Psyudo Code: 

Dir all database files in the system database directories

Put the database name in the array of DatabaseName[]

Put the database number in NumOfDataBase

Return True

}

Bool EnableDatabaseAccess(DatabaseName, EnableAccess)

{

Functional Specification: 

This function is to enable/disable the database access.

Parameters:



Text
DatabaseName

input

Bool
EnableAccess

input True/False

Return Values:


True


Succeed


False


Failed

Assumptions:


None

Psyudo Code: 

Check if DatabaseName is right

Set the Database Access Property to True/False

Return True

}

Bool DatabaseMaintenance(DatabaseName)

{

Functional Specification: 

This function is to launch the database application for maintenance.

Parameters:



Text
DatabaseName[]

input

Return Values:


True


Succeed


False


Failed

Assumptions:


None

Psyudo Code: 

Check if DatabaseName is right

Launch the Database application

Return True

}

Bool ListAllWebPages(WebPageNames[], NumOfDatabases);

{

Functional Specification: 

This function is to provide all databases name.

Parameters:



Text
WebPageNames[]

output

INT
NumOfWebPages

output 

Return Values:


True


Succeed to get all web pages name


False


Failed to get all web pages name

Assumptions:


None

Psyudo Code: 

Dir all web page files in the system web directories

Put the web page name in the array of WebPageNames[]

Put the web page number in NumOfWebPage

Return True

}

Bool EnableWebPageAccess(WebPageName, EnableAccess)

{

Functional Specification: 

This function is to enable/disable the web page access.

Parameters:



Text
WebPageName

input

Bool
EnableAccess

input True/False

Return Values:


True


Succeed


False


Failed

Assumptions:


None

Psyudo Code: 

Check if WebPageName is right

Set the Web Page Access Property to True/False

Return True

}

Bool EditWebPage (WebPageName)

{

Functional Specification: 

This function is to launch the web page editor for maintenance.

Parameters:



Text
DatabaseName[]

input

Return Values:


True


Succeed


False


Failed

Assumptions:


None

Psyudo Code: 

Check if WebPageName is right

Launch the Web page editing application

Return True

}

4.2 Eight Common Object Modules

4.2.1 COM Login

Boolean validation()

{
Functional Specification: 

This function is to verify login, retrieve corresponding access level information from the table “Logininfo” and set access level information to attribute “accessLevel”.

Conditions:
Data member “userName” and “password” should be assigned before invoking this function.

Return value:


Error                // Validation error

True                 // Validation successful

False                // Validation failed

Pseudo code: 

Open DB

Find record set from Logininfo With correct LID and Password

And Lstatus = true AND LexpiryDate > now()

See if we got anything.

If rs.EOF Or rs.BOF Then

There is no match, Do not allow the login.

  
Validation = False

Exit Function

End If

IF there is a match, display the program's main form

      

Set userName

        
Set password

Set accessLevel


End if

Close DB

validation = True

}

Boolean AddLogin(){

Functional Specification: 

This function is to add login account in table “Logininfo”

Conditions:
Data member “userName”, “password”, and “accessLevel” should be assigned before invoking this function.

Return value:


Error                // AddLogin error

True                 // AddLogin successful

False                // AddLogin failed

Pseudo code: 


Open DB

Find record set from table student with SID = userName


Find record set from table Employee with EID = userName

If both fails Then

AddLogin = False

Close DB

Exit Function

End If

If one of the search is successful



Open Table LoginInfo


Add new record in this table 

Close DB

    
AddLogin = True

    
Exit Function

End Function

}

Boolean UpdatePassword(){

Functional Specification: 

This function is to update login account in table “Logininfo”

Conditions:
Data member “userName”, “password”, and should be assigned before invoking this function.

Return value:


Error                // Update error

True                 // Update successful

False                // Update failed

Pseudo code: 

Open DB

Find record set in Table Logininfo with LID = userName

If not found then 

UpdatePassword = False

Exit Function

Else



Update password with input value Password

        

UpdatePassword = True

End If

Close DB

End Function

}

Boolean UpdateAccessLevel(){

Functional Specification: 

This function is to update login account in table “Logininfo”

Conditions:
Data member “userName”, “AccessLevel” should be assigned before invoking this function.

Return value:


Error                // Update error

True                 // Update successful

False                // Update failed

Pseudo code: 


Open DB


Find record set in Table Logininfo with LID = userName

If not find Then

UpdateAccessLevel = False

      
Exit Function

Else

     

Update accessLevel with new input value accessLevel

        
UpdateAccessLevel = True

End If

Close DB

End Function

}

Boolean EandDWebAccount(){

Functional Specification: 

This function is to Enable or Disable login account in table “Logininfo”

Conditions:
Data member “EandD” and “WebPage” should be assigned before invoking this function.

Return value:


Error                // EandDWebAccount error

True                 // EandD successful

False                // Update failed

Pseudo code: 

Open DB

If EandD = Disable Then

      

WebPage = WebPage * 10


Find recordset in table logininfo where LaccessLevel = WebPage

    
Else



Find recordset in table logininfo where LaccessLevel = WebPage

End If

Check if there is any record

    
If not find Then

      
EandD = False

        

Close DB

Exit Function

End If

//Disable account

    
If WebPage = 1 Then

    

While Not EOF

        


Laccesslevel = 10

Update

 

Wend

End If

    
If WebPage = 2 Then

While Not EOF

Laccesslevel = 20

Update

Wend

End If

If WebPage = 3 Then

While Not EOF

Laccesslevel = 30

Update

Wend

End If

If WebPage = 5 Then

While Not EOF

Laccesslevel = 50

Update

Wend

End If

     //Enable account

If WebPage = 10 Then

    

While Not EOF

        

Laccesslevel = 1

Update

 

Wend

End If

    
If WebPage = 20 Then

While Not EOF

Laccesslevel = 2

Update

Wend

End If

If WebPage = 30 Then

While Not EOF

Laccesslevel = 3

Update

Wend

End If

If WebPage = 50 Then

While Not EOF

Laccesslevel = 5

Update

Wend

End If

EandD = True

Close DB

End Function

}

Boolean AddMemo(){

Functional Specification: 

This function is to Add a memo in table “WebPost”

Conditions:
Data member “Memo” should be assigned before invoking this function.

Return value:


Error                // AddMemo error

True                 // AddMemo successful

False                // AddMemo failed

Pseudo code: 

Open DB

Set postDate = now()

Add now memo in table WebPost           

Close DB

AddMemo = True

End Function

}

Boolean ViewMemo(){

Functional Specification: 

This function is to View a memo in recent 30 days, memo data taken from table “WebPost”

Conditions: no
Return value:


Error                // ViewMemo error

True                 // ViewMemo successful

False                // ViewMemo failed

Pseudo code: 

Open DB

Find record set from WebPost WHERE Now()-[PostDate]<30

Use Table view to display news

End Function

}

4.2.2 COM Registration

Boolean CheckCapacity()

{

Functional Specification: 

This function is to count the student already registered in a Section, then compare with the Maximum allowed registration number in the section. If it is less than the “MaxEnrolled” value, return true.

Conditions:
TSecID should be assigned before invoking this function.

Return value:


Error                

True                //Still have enough space

False               //No enough space, or input the incorrect ‘TSID”

Pseudo code:

counter = 0

get TSID and SecID and count how many already entered.

Open DB    

Find record set from Take with providing TsecID

//check if there is any record

If not find Then

CheckCapacity = False

Close DB

Exit Function

End If

//If there are records, get the counter

    
Record set MoveFirst

While Not EOF

counter = counter + 1

record set MoveNext

Wend

 //Close and set nothing for reusing

Close DB

CheckCapacity = True

Find record set from Section with providing TsecID

If not find Then

CheckCapacity = False

Close DB

Exit Function

End If

//If find record

With Me

setSMaxEnrolled

End With

If counter < SMaxEnrolled Then

CheckCapacity = True

Else

CheckCapacity = False

Close DB

Exit Function

End If

Close DB

CheckCapacity = True

End Function

}

Boolean CheckPrequisite()

{

Functional Specification: 

This function first gets “course ID (SCID)” from table “Section” based on the “section ID (TSecID)” provided, then obtains “prerequested course ID (PreCID)” from table “Prerequest”. This PreCID will be used to compare with the student already learned courses. If found, return true.

Conditions:
TSID, TSecID should be assigned before invoking this function.

Return value:


Error                

True               //Satisfy the requirement

False              //Incorrect TSID, incorrect TSecID, or not satisfy the requirement

Pseudo code:

//get course ID 

Open DB

Find record set from Section with providing TsecID

If not find Then

CheckPrequisite = False

Close DB

Exit Function

End If

If find

    

With Me

        

setSCID

    

End With

End if 

//close and set nothing for reuse

Close DB

CheckPrequisite = True

//get preCID

Open DB

Find record set from prerequest with providing SCID

If not find Then

CheckPrequisite = False

Close DB

Exit Function

End If

If find then  

With Me

setpreCID

End With

End if

//close and set nothing for reuse

Close DB

CheckPrequisite = True

//get student's already learned course

Open DB

Find record set from section, take with providing SecID and TSID

If not find Then

CheckPrequisite = False

Close DB

Exit Function

End If

If find 

//Compare one by one with PreCID    

Record set MoveFirst

While Not EOF

With Me

setSCID

End With

If (SCID = PreCID) Then

Close DB

CheckPrequisite = True

      Exit Function

End If

Record MoveNext

Wend

//close and set nothing for reuse

Close DB

CheckPrequisite = False

End Function

}

Boolean CheckCourseinProgram(){

Functional Specification: 

This function first gets “course ID (SCID)” from table “Section” based on the “section ID (TSecID)” provided. This SCID will be used to compare with the student program’s course listing. If find, return true.

Conditions:
TSID, TSecID should be assigned before invoking this function.

Return value:


Error                

True               //The registering course is in the student’s program

False              //Incorrect TSID, incorrect TSecID, or not in the student’s program

Pseudo code:

//Get 'SCID' based on 'TSecID'

Open DB

Find record set from Section with providing TsecID

check if there is any record

If not find Then

CheckCourseinProgram = False

Close DB

Exit Function

End If

If find

        
setSCID

End if

//Close and set nothing for reusing

Close DB

CheckCourseinProgram = True

Find record set Student.SID, Program.PID, Consist_of.CPID, Consist_of.CCID from Table Program, consist_of, Student with providing TSID and SCID

//Check if there is any record

If not find Then

CheckCourseinProgram = False

Close DB

Exit Function

End If

Close DB

CheckCourseinProgram = True

End Function

}

Boolean CheckSchedule(){

Functional Specification: 

This function first gets “time slot” information from table “Section” and “Time_Slot” based on the “section ID (TSecID)” provided. This information will be used to compare with the registered course’s time_slot for this student and this semester. If find, return true.

Conditions:
TSID, TSecID should be assigned before invoking this function.

Return value:


Error                

True               //No conflict schedule

False              //Incorrect TSID, incorrect TSecID, or conflict time

Pseudo code:

Open DB

//get Day_of_week, Timeslot and Timeslot2

Find record set from Section and TimeSlot providing TsecID info

If not find Then

CheckSchedule = False

Close DB

Exit Function

End If

With Me

      
.set SYear 

.set STID 

.set Day_of_week 

.set TimeSlot 

.set Hours 

End With

TimeSlotF = TimeSlot + Hours / 0.5

      //close and set nothing for reuse

Close DB

CheckSchedule = True

//get student registered course's timeslot

Open DB

Find record set from FROM (Section INNER JOIN Take ON Section.SecID = Take.TSecID) INNER JOIN TimeSlot ON Section.SecID = TimeSlot.SecID WHERE Section.SYear = SYear AND Section.STID = STID AND Take.TSID = TSID

If not find Then

CheckSchedule = True 'be careful set it to true

Close DB

Exit Function

End If

//If find then compare time conflict one by one

Record set MoveFirst

While Not EOF

With Me

            
.set Day_of_week2 

            .set TimeSlot2

      
      .set Hours2

End With

TimeSlotF2 = TimeSlot2 + Hours2 / 0.5

If (((Day_of_week = Day_of_week2) And (TimeSlot >= TimeSlot2) And (TimeSlot <= TimeSlotF2)) Or ((Day_of_week = Day_of_week2) And (TimeSlotF <= TimeSlot2) And (TimeSlotF >= TimeSlotF2))) Then

            
CheckSchedule = False

            Close DB

Exit Function

End If

Record MoveNext

Wend

Close DB

CheckSchedule = True

End Function

}

Boolean CheckOverTaken(){

Functional Specification: 

This function first gets “SYear” and “Sterm” information from table “Section” based on the “section ID (TSecID)” provided. This information will be used to count the registered courses for this student and this semester. If find, return true.

Conditions:
TSID, TSecID should be assigned before invoking this function.

Return value:


Error                

True               // < 3, still allow student to register

False              //Incorrect TSID, incorrect TSecID, or >3, not allow

Pseudo code:

Open DB

//get SYear and STID

Find record set from Section with providing TsecID

If not find Then

CheckOverTaken = False

Close DB

Exit Function

End If

If find then

With Me

setSYear

setSTID

End With

End if

//close and set nothing for reuse

Close DB

CheckOverTaken = True

//get student registered course in SYear and STID

Open DB

counter = 0

Find record set from Section and Take with providing SYear, STID and TSID

If not find Then

counter = 0

        
CheckOverTaken = True 'be careful set it to true

Close DB

Exit Function

End If

   
//If there are records, get the counter

Record set MoveFirst

While Not EOF

        
counter = counter + 1

record set MoveNext

Wend

' 3 is the maximum allowed

If counter < 3 Then

CheckOverTaken = True

Else

CheckOverTaken = False

Close DB

Exit Function

End If

Close DB

CheckOverTaken = True

End Function

}

Boolean RegCourse(){

Functional Specification: 

This function is to register(add) a record into the table “Take” of database.

Conditions:
TSID, TsecID, regDate should be assigned before invoking this function.

Return value:


Error                

True                //Register successful

False               // incorrect student ID, incorrect section ID, or because does not 

// allow duplicated records.

Pseudo code:

Open DB

Open Table Take for adding new record

Adding new record with providing Info

//status = 5

if successful

Close DB

RegCourse = True

Exit Function

}

Boolean ViewClassList(){

Functional Specification: 

This function is to get a student’s registered class list from table “Take”, “section” and ‘Time_slot” of database. Then the retrieved RecordSet is set to ViewClassList. 

Conditions:

TSID, TYear, TTID should be assigned before invoking this function.

Return value:


ViewClassList               //Recordset                

Pseudo code:

Open DB

Find record set SYear, STID, SCID, SEName, Day_of_week, Ftime, Hours, TSCRID

FROM (Section INNER JOIN Take ON Section.SecID = Take.TSecID) INNER JOIN TimeSlot ON Section.SecID = TimeSlot.SecID 

WHERE (((Take.TSID)= TSID) AND ((Section.SYear)= SYear) AND ((Section.STID)=STID))

Set ViewClassList = record set

End Function

}
Boolean DropCourse(){

Functional Specification: 

This function is to change “Tstatus” in Table “Take” to “5”, also update “DropDate” field.

Conditions:
TSID, TSecID, DropDate should be assigned before invoking this function.

Return value:


Error                

True                //Drop successful

False               // incorrect TSID, TSecID, or there is no record in Table “Take” //having input value TSID and TSecID

Pseudo code:

Open DB

Find record set from Take with providing TSID and TsecID info

If not find Then

DropCourse = False

Exit Function

Else

Update record set “status” = 0

DropCourse = True

End If

Close DB

End Function

}
4.2.3 COM StudentInfo 

// Student Personal Information

Boolean AddPersInfo(){

Functional Specification: 

This function is to add a student into the table “Student” of database.

Conditions:
All data members related to personal information should be assigned before invoking this function.

Return value:


Error                

True                //Add successful

False               //Add failed

Pseudo code:

Open DB

Open the table "student" from the connection "strConnect"

Add New record with all data members related to personal information.

If success then

AddPersInfo = True

Close DB

    
Exit Function

End Function

}

Boolean UpdatePersInfo(){

Functional Specification: 

This function is to update a student in the table “Student” of database.

Conditions:
All data members related to personal information should be assigned before invoking this function.

Return value:


Error                

True                // Update successful

False               // Allocated SID for student does not exist in table “Student”

Pseudo code:
Open DB

Find record set from Table Student with providing SID

If not find Then

UpdatePersInfo = False

Exit Function

Else

Update record set with providing personal information

UpdatePersInfo = True

End If

Close DB

End Function

}

Boolean ViewPersInfo()  {

Functional Specification: 

This function is to view a student in the table “Student” of database.

Conditions:

SID should be assigned before invoking this function.

Return value:


Error                

True                // Information is successful retrieved

False               // Allocated SID for student does not exist in table “Student”

Pseudo code:
Open DB

Find a record set from Table “Student” with providing SID

See if we got anything.

If not find Then

      
FindStudent = False

Exit Function

Else 

passing values

End If

Close DB

FindStudent = True

End Function

}

Boolean DeletePersInfo(){

Functional Specification: 

This function is to Delete a student in the table “Student” of database.

Conditions:

SID should be assigned before invoking this function.

Return value:


Error                

True                // Information is successful deleted

False               // Allocated SID for student does not exist in table “Student”, or it    

          //can not be deleted because other tables include related records.

Pseudo code:
Open DB

Find record set with providing SID

If not find then

DeletePersInfo = False

Exit Function

Else

Delete record set

End if

Close DB

End function


}

// Student Academic Information

Boolean AddAcadInfo() 

{

Functional Specification: 

This function is to add an academic record into the table “Take” of database.

Conditions:
All data members related to academic information should be assigned before invoking

this function.

Return value:


Error                

True                //Add successful

False               //Add failed because incorrect student ID, incorrect section ID, or 

                                    // because does not allow duplicated records.

Pseudo code:
Open DB

Open the table "Take" from the connection "strConnect"

Add new record set with proving information

If success, AddAcadInfo = True

Exit Function

}

Boolean UpdateAcadInfo(){

Functional Specification: 

This function is to update an academic record in the table “Take” of database.

Conditions:
All data members related to academic information should be assigned before invoking this function.

Return value:


Error                

True                // update successful

False               // update failed because there is no record in “Take” equals input 

// TSID and SecID.

Pseudo code:
Open DB

Find record set from Table “Take” with proving TSID and SecID 

If not find Then

UpdateAcadInfo = False

Exit Function

Else

Update record set with providing information

UpdateAcadInfo = True

End If

Close DB

End Function

}

Boolean ViewAcadInfo(){

Functional Specification: 

This function is to get a student’s academic records list in the table “Take” of database. Then the retrieved RecordSet is set to ViewAcadInfo. 

Conditions:

SID should be assigned before invoking this function.

Return value:


ViewAcadInfo               //Recordset                

Pseudo code:

Open DB

Find record set from Table “Take” with providing TSID

Set ViewAcadInfo = rsADO

End function

}
Boolean DeleteAcadInfo(){

Functional Specification: 

This function is to delete a student’s academic record in the table “Take” of database.

Conditions:

TSID, SecID should be assigned before invoking this function.

Return value:


Error

True                //Delete successful

False               //Delete failed because there is no record in “Take” equals input 

                        // TSID and SecID.

Pseudo code:
Open DB

Find record set from Take with providing TSID and SecID

If not find Then

DeleteAcadInfo = False

Exit Function

    
Else

Delete record

End If

Close DB

DeleteAcadInfo = True

End Function

}
4.2.4 COM Schedule 

Bool ScheduleCourse(SectionID)

{

Functional Specification: 

This function is to provide a manual course-scheduling algorithm.

Parameters:



SectionID
input SectionID for scheduling

Return Values:


True


Succeed to schedule a course


False


Failed to schedule a course

Assumptions:


To simplize our implementation, we assume that each course only contains one lecture a week.

Psyudo Code: 


Open DB


If Course already scheduled, exit function

Get the class size from Section table
// Student number

Added by a free space rate



// e.g. 20% free 
space


Get lecture time
from Section table

// e.g. 2.5 hours


Figure out the necessary time slots

// say, one time slot unit = 0.5 hour

// 2.5 hours = 5 time slots


// (1) to avoid the time conflict among the courses that belong to the same program…


Get the sections that belong to the same program from the Section, Course and Program tables


Get the time schedule info of these relevant sections from the TimeSlot table


// (2) same course may have multiple sections, to avoid the potential time conflict…


Get the sections that point to the same course from the Section table


Get the time schedule info of these relevant sections from the TimeSlot table


Scheduled = False


While (not Scheduled)


Pick up an available time slot from TimeSlot table, >= necessary time slots

Check whether it drops into any Times of those relevant sections as mentioned in (1)


If so, next loop


Check whether it drops into any Days of those relevant sections as mentioned in (2)

If so, next loop


FoundClassRoom = False


While (not FoundClassRoom and not EndOfAllClassRoom)




Pick up an available classroom from ClassRoom table, >= extended class size





Check whether the classroom has been assigned to another course scheduled at






the same time from the TimeSlot table




If so, next loop




Else FoundClassRoom = True


Wend


If FoundClassRoom, Scheduled = True

Wend


If Scheduled 



Set DayOfWeek, LecStartTime, LecEndTime, LecClassRoomID

Add a record of the scheduled info into TimeSlot table 


Close DB


Return True


Else



Close DB


Return False

}

Bool AutoScheduleCourses(Year, Term)

{

Functional Specification: 

This function is to provide an automatic courses-scheduling facility. We will save the schedule info for those successfully scheduled sections, and leave those failed scheduled sections as un-scheduled. 

Parameters:



Year


only schedule those courses in this year and


Term


this term

Return Values:


True


Succeed to schedule all courses


False


Failed to schedule all courses

Assumptions:


To simplize our implementation, we assume that each course only contains one lecture a week.

Psyudo Code: 


For each course in the Year and Term 



Get the SectionID from the Section table



Call ScheduleCourse(SectionID)



If Failed




Put the SectionID into a log file


Next


If all courses are successfully to be scheduled



Put an msg as “Not all courses are successfully scheduled.”



Return False


Else



Return True

}

Bool GetCourseScheduleInfo(SectionID)

{

Functional Specification: 

This function is to provide the course schedule info. 

Parameters:



SectionID
SectionID

Return Values:


True


Succeed to get the schedule info


False


Failed to get schedule info

Assumptions:


To simplize our implementation, we assume that each course only contains one lecture a week.

Psyudo Code: 


Open DB


If SectionID does not exist



Return False


Get the DayOfWeek, StartTime, EndTime, ClassRoomID from the TimeSlot table


If DayOfWeek is empty






Return False


Else



Return True


Close DB

}

Bool ScheduleExam(SectionID)

{

Functional Specification: 

This function is to provide a manual exam-scheduling algorithm.

Parameters:



SectionID
input SectionID for scheduling

Return Values:


True


Succeed to schedule an exam


False


Failed to schedule an exam

Assumptions:


None

Psyudo Code: 


Open DB


If Exam already scheduled, exit function

Get the class size from Section table
// Student number

Added by a free space rate



// e.g. 20% free 
space


Get exam time
from Section table

// e.g. 2.5 hours


Figure out the necessary time slots

// say, one time slot unit = 0.5 hour

// 2.5 hours = 5 time slots


// (1) to avoid the time conflict among the courses that belong to the same program…


Get the sections that belong to the same program from the Section, Course and Program tables


Get the exam time schedule info of these relevant sections from the TimeSlot table


// (2) same course may have multiple sections, to avoid the potential time conflict…


Get the sections that point to the same course from the Section table


Get the exam time schedule info of these relevant sections from the TimeSlot table


Scheduled = False


While (not Scheduled)


Pick up an available time slot from TimeSlot table, >= necessary time slots

Check whether it drops into any Times of those relevant sections as mentioned in (1)


If so, next loop


Check whether it drops into any Days of those relevant sections as mentioned in (2)

If so, next loop


FoundClassRoom = False


While (not FoundClassRoom and not EndOfAllClassRoom)




Pick up an available classroom from ClassRoom table, >= extended class size





Check whether the classroom has been assigned to another course scheduled at






the same time from the TimeSlot table




If so, next loop




Else FoundClassRoom = True


Wend


If FoundClassRoom, Scheduled = True

Wend


If Scheduled 



Set ExamDay, ExamStartTime, ExamEndTime, ExamClassRoomID

Add a record of the scheduled info into TimeSlot table 


Close DB


Return True


Else



Close DB


Return False

}

Bool AutoScheduleExams(Year, Term)

{

Functional Specification: 

This function is to provide an automatic exams-scheduling facility. We will save the schedule info for those successfully scheduled sections, and leave those failed scheduled sections as un-scheduled. 

Parameters:



Year


only schedule those courses in this year and


Term


this term

Return Values:


True


Succeed to schedule all exams


False


Failed to schedule all exams

Assumptions:

None

Psyudo Code: 


For each course in the Year and Term 



Get the SectionID from the Section table



Call ScheduleExam(SectionID)



If Failed




Put the SectionID into a log file


Next


If all exams are successfully scheduled



Put an msg as “Not all exams are successfully scheduled.”



Return False


Else



Return True

}

Bool GetExamScheduleInfo(SectionID)

{

Functional Specification: 

This function is to provide the exam schedule info. 

Parameters:



SectionID
SectionID

Return Values:


True


Succeed to get the schedule info


False


Failed to get schedule info

Assumptions:


None

Psyudo Code: 


Open DB


If SectionID does not exist



Return False


Get the ExamDay, ExamStartTime, ExamEndTime, ExamClassRoomID from the TimeSlot table


If ExamDay is empty






Return False


Else



Return True


Close DB

}

4.2.5 COM Classroom (Implemented in VC++)

Class Schedule

Void DisplayStudentList(CID,CourseName,ProfessorName)

{

  Connect with database SCHDULE

  SQL  search in database SCHDULE

  DISCONNECT with the database

}

Void AddStudentToList(SID, Sname)

{

  display textedit box"SID", "Sname","SsectionID","Saddress", "Sphone" "Student courseID"

  input SID, Sname, student section ID, student address, student phone number Student courseID,

  press button ‘Submit’

  connect with database

  SQL will fill in database COURSE

  DISCONNECT with database

}

Class ListSchedule

Void AddListSchedule

{

  display textedit box"Course ID", "Professor ID","SsectionID",  "Form"

  input CID, ProfessorID, SectionID, Form

  press button "Submit"

  connect with database

  SQL will fill in database COURSE

  DISCONNECT with database

}

Void DelSheduleFromList(CID,CourseScheduel ID)

{

     Open DB

     While(not end of the  List table )

       {

         check the record,

         if(CourseScheduel ID =CID )

           {

               Delete record

               Return True

           }

        Next Record

     }

   Display Not Found  message

   Return False

}

Void ViewSchedueList(Schedule Name)

{

  If(Schedule Name is not a valid number Then Exit with wrong message

End if

Open Database

Check this Schedule Name

If(no match) Then

Exit with wrong message

End if

Print CID, CourseName,Section ID, class time to CourseScheduleList page

Close Database

}

Class ListClassRoom

Void AddClassroomToList(New ClassID,New RoomLocation)

display textedit box "ClassroomID, "RoomLocation"

Input(New ClassID,New RoomLocation) in the form

        Open DB

        Set ClassID=NewClassID

            RoomLocation=New RoomLocation

       }

   close DB

}

Void DelClassroomFromList(RID, Room ID)

{

     Open DB

     While(not end of the  List table )

       {

         check the record,

         if(Room ID =RID )

           {

               Delete record

               Return True

           }

        Next Record

     }

   Display Not Found  message

   Return False

}

Void ViewClassroomList

{

  Open Database

  Input Classroom

  While (not end of the file of the file)

  Display CID, RoomID RoomLocation, class time to ClassroomList page

  End while

}

4.2.6 COM EmployeeInfo


Get information of the employee


int GetEmployee(){



Connect to database 



Retrieve the record from table “employee”



if ( succeeded ) 




Assign values of this record into data members of the object




return 1



else




return an error code

}


Add an employee into database


int AddEmployee(){



Connect to database 



Get recordset from table “employee”



Create a new record



Add the new record into database “employee”



if ( succeeded ) 




return 1



else




return an error code

}

Delete a employee


int DeleteEmployee(){

Connect to database 



Get recordset from table “employee”



Delete the specified record



if ( succeeded ) 




return 1



else




return an error code


}

Update the employee


int UpdateEmployee(){

Connect to database 



Get recordset from table “employee”



Update Recordset



if ( succeeded ) 




return 1



else




return an error code


}


Facilities for class employee

Get all professor who are involved in the program ID 


and their related teaching sections


recordSet ProgEmployee(string prog_id, string year="", string term=""){

Connect to database 



Get recordset from table “employee”, “program”, 



return recordset


}



Get all employee who work for the department


recordSet DepEmployee(int dep_id) =""){

Connect to database 



Get recordset from table “employee”, “department”, 



return recordset


}


4.2.7 COM Course

Get information of the course

int GetCourse(){

Connect to database 



Retrieve the record from table “course”



if ( succeeded ) 




Assign values of this record into data members of the object




return 1



else




return an error code

}

Add a course


int AddCourse(){



Connect to database 



Get recordset from table “course”



Create a new record



Add the new record into database “course”



if ( succeeded ) 




return 1



else




return an error code

}


Delete a course


int DeleteCourse(){

Connect to database 



Get recordset from table “course”



Delete the specified record



if ( succeeded ) 




return 1



else




return an error code


}

Update the course


int UpdateCourse(){

Connect to database 



Get recordset from table “course”



Update Recordset



if ( succeeded ) 




return 1



else




return an error code


}


Facilities for class course


Get prerequiste courses


recordSet PreRequestCourse(course_id){

Connect to database 



Get recordset from table “prerequest”, 



return recordset


}



Get all courses of the program ID


recordSet ProgCourse(string prog_id) {

Connect to database 



Get recordset from table “consist_of”,  “course”



return recordset


}



Get all courses teached by the professor prof_id


recordSet ProfCourse(int prof_id) ) {

Connect to database 



Get recordset from table “section”,  “course”



return recordset


}



Get all courses taken by the student sid


recordSet StudentTakenCourse(int sid) {

Connect to database 



Get recordset from table “take”



return recordset


}


4.2.8 COM Section

Get information of the section

int GetSection(){

Connect to database 



Retrieve the record from table “section”



if ( succeeded ) 




Assign values of this record into data members of the object




return 1



else




return an error code

}

Add a section

int AddSection(){



Connect to database 



Get recordset from table “section”



Create a new record



Add the new record into database “section”



if ( succeeded ) 




return 1



else




return an error code

}

Delete a section

int DeleteSection(){

Connect to database 



Get recordset from table “section”



Delete the specified record



if ( succeeded ) 




return 1



else




return an error code


}

Update the section


int UpdateSection(){

Connect to database 



Get recordset from table “section”



Update Recordset



if ( succeeded ) 




return 1



else




return an error code


}


Facilities for class section

Get all sections offered by the program ID


recordSet ProgSection(string prog_id, string year="", string term=""){

Connect to database 



Get recordset from table “consist_of”,  “section”, “course”



return recordset


}



Get all sections teached by the professor prof_id


recordSet ProfSection(int prof_id, string year="", string term=""){

Connect to database 



Get recordset from table “employee”, “section”,  “course”, “timeslot”



return recordset


}



Get all sections taken by the student sid


recordSet StudentTakingSection(int sid, string year="", string term=""){

Connect to database 



Get recordset from table “student”, “take”, “section”,  “course”, “timeslot”



return recordset


}


5 Testing Report

5.1 General Introduction to Testing

5.1.1 Objective

Software testing is one of the important process phases of the system development. It is to make sure that the system meets its requirement and expectations. This testing will focus on the following 7 aspects.

1. Identifying the software components and the test information that should be tested 

2. Identifying all the test phases

3. Listing all the  test requirements to identify what should be tested

4. Describing the different testing strategies

5. Identifying all the required resources

6. Listing all the deliverable elements of the test 

7. Listing different test cases

Our testing will focus on the following aspects of the software:

The test results compared with the expected results, ie. meet the specifications.

The system performance compared with customer’s expectations 

Reliability in terms of high numbers of concurrent internet access  

Robustness in terms of the ability of handling incorrect operations.

User friendliness in terms of the quality of the prompt messages and help messages

5.1.2 System Description

The system is a WEB oriented application used for student to register online. It contains the following main functions:

1. Public information for related stakeholders such as student, professors, and system administrators.

2. Student online course registration

3. Generation of class lists and posting grade for professors

4. Maintaining student personal information and records

5. Scheduling courses and exams

6. Generation of classroom information

7. Keeping records of faculty teaching information

8. Generation of statistical summary reports

5.1.3 Test Methodology and Scope

The methodology applied for testing the system is established according to the the SRD (see the part of Software Requirement Document) which are listed all the requirement of the system, the requirement-driven testing is chosen. Test cases are achieved from assessing whether this system satisfied each requirement. both static and dynamic testing techniques are performed, Considering that the system is developed only within 4 months, we choose the deliver time to balance the maintaining cost and testing cost. Given the resource constraints, we mainly focus on the Black box testing in which the input data are produced without knowing of the program’s data structure and algorithm and White box testing in which the input data are chosen based on the knowledge of the program’s structure. In addition, we also conducted general testing on Usability test, Performance test, Stress Test and Configuration Test, which are used as a reasonable estimation to meet some non-functional requirements.

The verification activities are based on the System Requirement Documentation. All the requirements specified in the SRD need to be met. Testing plan has developed and evolved in conjunction with the system design and specifications. The acceptance testing is conducted by checking against the customer’s acceptance criteria. Each program component is Tested on its own, and isolated from the other units in the system which is referred to Unit testing. The testing team checks the program internal structures and boundary conditions for the input data and expected output result. After the unit tests have completed, Module tests and integration test were carried out as well as some testable non-functional requirement testing according to our test condition.

The validation process will be conducted with our customers during the non-functional requirements testing and acceptance testing before the delivery of the final product. 

5.1.4 Testing Process

The testing process proceeds in stages where testing is carried out incrementally in conjunction with system implementation. Figure 5.1 shows the normal testing sequence of testing in software engineering.

1. Unit testing: Individual components are tested independently, without other system components.

2. Module testing: All units within a module are tested together to ensure they interact properly.

3. Sub-system testing: It involves testing collections of modules, which have been integrated into sub-systems, Sub-systems may be independently designed and implemented, The sub-system test process should concentrate on the detection of interface errors by rigorously exercising their interfaces.

4. Acceptance testing: This is the final stage in the testing process. The system is tested with data supplied by the system procurer rather than simulated test data.

The following testing will be performed in our project:

1. Unit testing, ensure that all the components within a module function properly as specified

2. Integration testing, ensure that the components link and interact properly

3. System testing, ensure that the system has met or exceeded acceptance criteria











Figure 5.1 Test Process

5.1.5 Test Activities in Software Process

The Test plan for the system is started as early as the system requirements are formulated and it is developed gradually through out the process of the software development.

Figure 5.2  shows the relationships between the plans and software process activities. Unit testing is performed during the implementation phase, programmers make up their own test data and test cases, incrementally test the codes as they are developed. Integration tests are developed in conjunction with the system design, and they will be carried out after every unit has been implemented and tested. System test is planed as early as the stage of the system specification, and it will be performed after the sub-system integration test. Acceptance test plan is considered during the system specification.


Figure 5.2 Testing phases in the software process

5.1.6 Testing Schedule      

ID
Static Verification
Dynamic Testing
Team Members
Schedule

1
Preparation for static testing

All members
Week 2

2
Individual Preparation

Testing Team
Week 3

3
Specification Review

SRD Team, Testing Team
Week 5

4
AD review

Designers, Testing Team
Week 8

5
IMD Review

Designer, Testing Team
Week 10

6
MIS Review

Designer, Testing Team
Week 10

7
Code Review
Unit Testing
Testing Team
Week 12

8
Code Inspection
Unit Testing
Testing Team
Week 13

9
Review if Unit Testing
Integration Testing
SRD Team, Designers, Testing Team
Week 14

10
Review integration Testing
System Testing
All Members
Week 15

5.2 Testing Requirements

Testing requirements give the specifications for what will be tested . It also acts as a guideline for the detail testing plan and test case design. All the test requirements are consistent with the SRD specifications. 

5.2.1 Functionality

It refers to the functional requirements of the system, all the functional requirements will be tested according to the SRD. To make sure that there is no any missing or incomplete functionality. We make the list for all the module which will be tested as following. 

Student  module

· A Student can acquire, view and update personal information

· A student can acquire course schedule information

· A student can acquire exam schedule information

· A student can acquire view record information

· Course registration

· A student can get appropriate available course lists

· A student can register appropriate courses under registration limits

· A student can make late registration after the deadline  

Faculties module

· A faculty can  be linked to the intended pages

· A faculty can acquire and update personal information

· A faculty can view exam schedule information

· A faculty can view teaching schedule information 

· A faculty can view class list and input grade

· A faculty can post the students’ grade

GPD module

· A GPD can be linked to the intended pages

· A GPD can view registration information

· A GPD can view the faculty information

· A GPD can view the students’ information

· A GPD can add/cancel/update course 

· A GPD can view courses schedule

· A GPD can view exam schedule

Administrator module

· A administrator can  be linked to the intended pages

· Add, delete and find the classroom buttons function properly

· Users are able to add, delete and find the course records

· Users are able to make exam and supplemental schedule

· Users are able to make course schedule

· Users are able to get class list and input grade

· Users are able to insert new records of faculty members

· Users are able to search a faculty member or a student

· Users are able to update faculty student personal information

· Reports

· Users are able to send letters to students to confirm their course registration

· Users are able to edit and print course schedule for undergraduate or graduate programs

· Users are able to list teaching duties for each faculty member

Monitor module

· A monitor can  be linked to the intended pages

· A monitor can create a new account and assign login user names and passwords for faculty members and students with different privileges

· A monitor can delete a account for faculty member and student member

· A monitor can maintain the web page (enable/disable)

· A monitor can post notes on web site

5.2.2 GUI & Usability

· Default conditions: to make sure that the proper default values are shown up

· Events: to make sure that appropriate buttons or hyperlinks are activated

· Usability: to make sure that GUI I user friendly, consistent and easy to learn

5.2.3 Performance

· Database is to validate the response for 1~10users which should makes one transaction  for each.

· Load is to validate response for 1~10users and each makes one transaction

5.2.4 Stress Testing

· Lower memory/disk space on Server  It is to ensure application work properly

· Lower memory/disk space on Client   It is to ensure application work properly

5.2.5 Configuration

· The configuration is to make sure that the SIMS could be compatible for the Internet Explorer and Netscape.

· The configuration is also to make sure that the system should be compatible to other applications and it should has the compatibility with hardware as specified. 

5.3 Testing Strategy

The test strategy presents the approach to the testing of the system. The Test Requirements described what would be tested. The testing strategy describes how it will be tested.  The main considerations for the test strategy are the techniques to be used and the criteria for knowing when the testing is complete. In order to approach the objective of the verification and validation process, both static and dynamic testing techniques will be performed. The black box and white box testing approaches will be used to generate test case and input data sets. 

5.3.1 Static Testing 

It includes the analysis and checking of system representations such as the program source code requirement document, design diagrams and so on. All of the stages of the software process will be applied in the static checking. 

There are some reasons why we need the static checking as following. 

1. System requirement validation.

2. Omissions, inconsistencies, and redundancies searching 

3.  Specification of the documents design and coding conformation

5.3.1.1    System requirements validation

Starting with SRD reviews, we focus on the following checking points:

1. Is the document sufficiently clear and readable? Where and why it is not?

2. Does the document contain unstated, embedded assumptions?

3. Does the document contain any ambiguities, inconsistencies, vague, omissions?

4. Is the problem to be solved clearly described?

5. Are all condition required for the solution effective?

6. Have the benefit expected form the solution clearly explained?

7. Does the documented specification comply with agreed-on business practices and standards?

8. Is there mutual agreement on and support for the specifications by both clients and developers?

5.3.1.2    Design verification:

For high level design, we focus on the following checking points:

1. Requirements compatibility: make sure the design consistent with the requirements and find the related problem.

2. Design Documentation and Version control: checking all the documentation are the latest version and meet the version control conventions. 

3. Architecture and Interfaces: checking the logical and physical structure of the system architecture, the decomposition of the system to subsystem, the internal interface design, and the cohesive of different modules in terms of architecture and interface design

4. Secifiction Detail: checking the completeness and accuracy of the specification of each function and the interactions among functions / modules been designed.

For low level design verification, we focus on the following checking points:

1. Mapping to the high level design: checking the structural integrity preservation, the match between each component and module, the fulfillment of each interface meet requirements of high level design, uncover the problem exits in high level design. In addition, checking whether the low level design helps to achieve the high level design goal.

2. Design Completeness and Correctness: 

5.3.1.3    Coding Inspection 

Inspection Checking List:

1. does the code do what has been specified? Are we soling the right problems?

2. Does the algorithm used solve the problem correctly?

3. It is the overall structure or architecture of the code readily apparent?

4. Does any software component duplicate and exiting component, which could be reused?

5. Does each module have a single entry point and single exit point?

6. Does any module contain more than ten branches?

7. Can each atomic module be reviewed and understood in five to ten minutes(If not, it is too complex.)

8. Have naming convention been followed for all pointers, indices, labels, variables, arrays and constants?

9. Is the code adequately commented?

10. Are all variables and constants defined?

11. Are there any global or shared variables and, if so, is their use carefully controlled?

12. Is all memory freed after use?

13. What happens if garbage values are entered?

14. Can abnormal exits or terminations occur?

15. Are error and condition messages prodded by accessing a common table of messages?

16. Has maintainability been tresses over efficiency?

5.3.2 Unit Testing

It is the important preparation for the integration testing of the whole system. It is to make sure that there are no obvious problems at each individual testing. The goals of these tests are to verify data integrity, proper hyperlink  connection and database access. 

All of the units in the project are defined as functional components within different modules. All functional components should be verified individually. It should include static and dynamic testing. The unit code inspection should be completed early than dynamic testing. There are more specification of these two aspects as following.

5.3.2.1    Unit Static Testing 

Objective:  (coding error identification)

Technique: (Code inspection)

Completion Criteria: (inspection for all lines)     

5.3.2.2    Unit Dynamic Testing 

Objective: The purpose is to make sure that all the internal functional of each component to be working properly. It is also to make sure that the input processing and data integrity follow the rules and work properly.

Technique: Both White Box testing and Black box testing will be used. For each data integrity and access rule, at least one test script should be created for testing. 

Completion criteria: Proceed all the testing cases of the system.

5.3.3 Integration Testing

The integration is the most important part in all of the testing procedure. It should make sure the functional interactions correctly and effectively. And it also has to make sure that the functional interactions compatible. It focuses on interaction among all the components, modules and subsystems. It reveals that the system has an interesting characteristic that all functional modules do not interact with each other but all are related to the database. The normal integration test method may not be the best. Our integration testing was conducted after all modules were completed and connected with the same database and homepage. 

The most widely used system integration test techniques is Bottom up strategy, which uses black box testing techniques. Data updating verification should be perform at least three levels: 1) current data retrieval. 2) data updating. 3) update data retrieval

The Completion Criteria are: 
1). All test scripts must be executed. 2). No high priority or severity defects are found
5.3.4 System Testing

We need the system testing to perform the application evaluation in a new working environment. It is to make sure that the system could be worked properly in the new environment. The test can discover most of the deviations from the system’s functional requirements under normal and abnormal conditions.

5.3.4.1    Functional Testing

It focuses on the security rules and functions. The goal of these tests is to verify all the functions to meet requirements properly. The Test objective is to ensure proper Web navigation, data control flow for each function and security rule. The most widely used functional testing techniques are: 1. All functional requirement, integrity rules and security rule will be tested by test scenario. 2. The test cases will be combined to emulate different navigation and function sequences to ensure that the functions can be performed in random order (tasks are not dependent) 3. Verification of data updating should be perform at a minimum of three levels: retrieve current data, update data and retrieve update data. The Completion Criteria are: 1. All test scripts must be executed. 2. No high priority or severity defects are found.

5.3.4.2    GUI and Usability Testing

It is to check a user’s interaction with the system. The goal of this testing is to make sure that the user interface provides the user the appropriate access and intuitive navigation  through the functions of the application.  This testing also makes sure that the objects within the GUI function work under the current stand requirement. The Objective is to Verify and validate: 1. Navigation through the application, including window to window, field to field and use of access methods (tab keys, mouse movements). 2. Window and dialog objects and characteristics, such as menus, size, position, state, and focus conform to standards. 3. GUI is user-friendly, easy to access and attractive enough to invite users in. The most widely used techniques is to reuse system test cases (or create new test cases as necessary) to test each window or dialog box to validate proper navigation and object states for each window. The Completion Criteria is that Each window successfully validated to remain consistent with benchmark version or within standard

5.3.4.3    Performance Testing

It measures response time, retrieve rate, updating rate and other time sensitive requirements. The purpose is to verify and validate the performance requirements. It is usually executed several times, each using a different “background load” on the system. The initial test should be performed with a “nominal” load, same with the normal load experienced on the target system. A second performance test is run using a peak load.

Additionally, it can be used to profile and tune a system’s performance as a function of conditions. The Test objective is to validate system response time for designated functions. The most widely used techniques are: 1. Use function test cases developed for function testing. 2. Increase the number of login occurrences. 3. Increase the number of iterations as each data updating occurs. The Completion Criteria is the successful completion of the test cases without any failures and within the expected / required time allocation. Multiple transactions / multiple users: successful completion of the test cases without any failures and within acceptable time allocation.

5.3.4.4    Stress Testing

Stress testing is intended to find errors due to low resources or competition for resources.  Low memory or disk space may reveal defects in the software that aren't apparent under normal conditions.  Other defects might result from competition for shared resources like database locks or network bandwidth.  Stress testing identifies the peak load that the system can handle.  The goal of stress testing is to identify and document the conditions under which the system fails to continue functioning properly.

5.3.4.5    Configuration Testing

It focuses on the testing verification of the software on different software and hardware configuration. Particular hardware decide the client’s workstation, database driver and so on. Client workstation may have different software loaded. Different combinations could use different sources and may be active. 

5.4 Test Cases

After the test plan and strategies have been described, the function or performance is tested in detail to meet the requirements.  The following subsection describes the detailed testing activities.  It follows the individual module design and software requirement.

5.4.1 Login Component Test

Function 1  allow different user enter corresponding service page
Objective: To ensure the user name and password is correct, and has  right privilege  

Methodology: Black-box testing 

Case
Description
Input data
Expected Result
Passed?

Case 1
No User ID, no password input
ID=

Password =
Message: “Please enter a valid User ID!!!”
(

Case 2
No User ID, have password input
ID=

Password =1234
Message “Please enter a valid User ID!!!”
(

Case 3
valid ID, no password input
ID= 1231231

Password =
Message “Login failed, please try again!”
(

Case 4
invalid ID, no password input
ID= 1222222

Password =
Message “Login failed, please try again!”
(

Case 4
valid ID, incorrect password
ID= 1005001

Password =abcde
Message “Login failed, please try again!”
(

Case 5
Non integer ID
ID= w1111111

Password =5001
Message “Please enter a valid user ID! ”
(

Case 6
Expired ID
ID= 1005003

Password =fock
Message “Login failed, please try again! ”
(

Case 7
valid student ID, valid password
ID= 1005001

Password =yorga
Message “Enter Student Service Page”
(

Case 8
valid faculty ID, valid password
ID= 3001121

Password =1235
Message “Enter Faculty Service Page”
(

Case 9
valid GPD ID, valid password
ID= 3004123

Password =1237
Message “Enter GPD Service Page”
(

Case 10
valid Monitor ID, valid password
ID= 1231231

Password =1234
Message “Enter monitor page”
(

Case 11
valid administrator ID, valid password
ID= 3005123

Password =about
Message “Enter administrator page”
(

Case 12
invalid ID
ID= 30051231

Password =about
Message “Login failed, please try again!”
(

5.4.2 Student Module Test

Function S1: View student program information (Reference to SRD 12.2)

Objective: To test if the related information is displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the My Program Button
Display current student involved program ID, Program Name including course and prerequisite information.  
(

Function S2: view current courses (Reference to SRD 12.2)

Objective: To test if the related information is displayed 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Current Courses Button
List the current course details the student enrolled in
(

Function S3: Add courses (Reference to SRD 1.3)

Objective: check add course correctly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Add Course Button
Display a new page with the drop lists for selecting year and term
(

Case 2
Select year=1999 term=summer 
No  courses available for adding, because this term is outdated
(

Case 3
Select year=2001 term=summer
Display all courses available for student to select
(

Case 4
Select 1 Course from the lists, press Add button
Display a message of “1 course is added, to view current courses, click ‘here’”
(

Case 5
Select 3 courses from the course list, press Add button 
Display a message of “3 course is added, to view current courses, click ‘here’”
(

Function S4: Drop Course (Reference to SRD 1.3)
Objective: To test if the selected course will be deleted
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Drop Course button  
Display a new page listing the student’s current course information. 
(

Case 2
Select courses from the displayed course list, then click Drop button.
Display a message of “1 course is dropped, to view current courses, click here”
(

Function S5: View Class Schedule (Reference to SRD 1.3)
Objective: To test if student’s current class schedule will be displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Class Schedule button
The student’s current class schedule will be displayed
(

Function S6: View Exam Schedule (Reference to SRD 1.3)
Objective: To test if student’s current exam schedule will be displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the exam Schedule button
The student’s current exam schedule will be displayed
(

Function S7: View Student Record (Reference to SRD 1.3)

Objective: To test if student can view his student record.
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Student Record button
Display student record page with detail information
(

Function S8: View Student Account Information (Reference to SRD 1.3)

Objective: To test if student can view his student account information
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Account button
Display student account page with detail account infromation
(

Function S9: View Student personal information (Reference to SRD 1.3)

Objective: To test if student can view his personal information

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Personal Info button
Display the student’s personal information
(

Case 2
Click Update button
Go to Update personal information page
(

Function S10: Update Student personal information (Reference to SRD 1.3)

Objective: To test if student can update his personal information
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Update Personal Info button
Display the student’s update personal information page
(

Case 2
Change City info to “Verdun”, click Submit button
Display message “Updating is done, to view your new personal info, click HERE”
(

Case 3
Click HERE link
The new info with the updated city name “Verdun” will be display
(

5.4.3 Faculty Module Test

Function F1: View teaching schedule information (Reference to SRD 1.3)

Objective: To test if the teaching schedule information is displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Teaching Schedule Button
Display a page for selecting teaching term 
(

Case 2
Select year=2000, term =03, and click View Teaching Schedule button
Display a list of teaching schedule for selected term
(

Function F2: view class list (Reference to SRD 1.3)

Objective: To test if the class list information is displayed 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Class list Button
Display a page for selecting course, section, year, term information 
(

Case 2 
Select course = comp248, section=BB, year= 1999, term=03, then click View class list button
The information for COMP248 BB in 1999 term winter will  be displayed
(

Case 3 
Select course = comp248, section=AA, year= 1999, term=03, then click View class list button
Message “you are not teaching this section” will  be displayed
(

Function F3: View Exam Schedule (Reference to SRD 1.3)
Objective: To test if current exam schedule will be displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the exam Schedule button
A page for selecting year, term will be displayed
(

Case 2 
Select year= 2000, term=03, then click View Exam Schedule button
Display a list of exam schedule
(

Function F4: Post Grade (Reference to SRD 1.3)
Objective: To test if function of grade posting is working
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click post grade button  
Display a new page for selecting course, section, year, and term information. 
(

Case 2
Select course = comp248, section=BB, year= 1999, term=03, then Submit button
Display classes list with student ID and drop down box for selecting grades
(

Case 3
Select grade = F for Student whose id = 1005003 and grade = A+ for id=1005004, then click Post grade button.
Display a page with updated grade information
(

Case 4
Select course = comp248, section=AA, year= 1999, term=03, then Submit button
Display message “you are not teaching this section”
(

Function F5: View personal information (Reference to SRD 1.3)

Objective: To test if an employee can view his personal information
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Personal Info button
Display employee’s personal information with a link to update page
(

Case 2
Click update link ‘HERE’ button
Go to Update personal information page
(

Function F6: Update employee’s personal information (Reference to SRD 1.3)

Objective: To test if an employee can update his personal information
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Update Personal Info button
Display the employee’s update personal information page
(

Case 2
Change City info to “Verdun”, click Submit button
The updated information will be displayed
(

5.4.4 GPD Module Test

Function G1: View/delete/modify program course information (Reference to SRD 1.3)

Objective: To test if the related functions are working correctly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Program course Button
Display a list of courses in the program with links to old course’s modification, deletion and adding new course pages
(

Case 2
Select delete course COMP237
Display a page with course detail information and confirmation of deletion
(

Case 3
Click confirm button
Display the updated course information page
(

Case 4
Select modify course COMP554
Display a page with course detail information and confirmation of modification
(

Case 5
Change Course title to “software engineering 2”, then click confirm button
Display the modified course information page
(

Case 6
Click add course link “here”
Display a page with sets of entry boxes of course information 
(

Case 7
Course ID = comp233, title=”Testing”, credit = 3, type=C, Department=CS, Status=1,Prerequest=””, then click submit button
Display message “Warning: this course already existed!!!”
(

Case 8
Course ID = comp333, title=”Testing”, credit = 3, type=C, Department=CS, Status=1,Prerequest=””, then click submit button
Display the updated course information page
(

Function G2: view class schedule (Reference to SRD 1.3)

Objective: To test if class schedule information is displayed 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Class Schedule Button
Display current term class schedule information and link to other terms
(

Case 2 
Click the link to other terms
Display sets of drop boxes for selecting term, year information
(

Case 3 
Select year=2000, term=03,

And click View class schedule button
Display a list of schedule of selected term
(

Function G3: View Exam Schedule (Reference to SRD 1.3)
Objective: To test if current exam schedule will be displayed. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Exam Schedule Button
Display current term exam schedule information and link to other terms
(

Case 2 
Click the link to other terms
Display sets of drop boxes for selecting term, year information
(

Case 3 
Select year=2000, term=03,

And click View exam schedule button
Display a list of schedule of selected term
(

Function G4: Registration Information(Reference to SRD 1.3)
Objective: To test if function of grade posting is working
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Registrtion Section Info button  
Display current registration information. 
(

Function G5: View Professor information (Reference to SRD 1.3)

Objective: To test if an GPD can view professor information
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Update Professor Info button
Display the information of professors teaching in current term and a link to other terms
(

Case 2 
Click the link to other terms
Display sets of drop boxes for selecting term, year information
(

Case 3 
Select year=2000, term=03,

And click View Professor info  button
Display a list of professor’s teaching info of the selected term
(

5.4.5 Administrator Module Test

Function A1: View/Add/Update academic schedule  (Reference to SRD 1.3)

Objective: To test if the related functions are working correctly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Academic Schedule Button
Display a list of choices of List/Add/Update academic schedule
(

Case 2
Select the “List the academic schedule” radio button, then click choose
Display a page for selecting academic year, term
(

Case 3
Select year=2000, term=winter, then click submit
Display the info of the selected term?
(

Case 4
Select the “Add the academic schedule” radio button, then click choose
Display a page for selecting academic year, term
(

Case 5
Select year=2000, term=winter, then click submit
Display the info of the selected term?
(

Case 4
Select the “Update the academic schedule” radio button, then click choose
Display a page for selecting academic year, term
(

Case 5
Select year=2000, term=winter, then click submit
Display the info of the selected term?
(

Function A2: Scheduling and listing course schedule information  (Reference to SRD 1.3)

Objective: To test if the related functions are working correctly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Course Scheduling Button
Display a page with a radio button for selecting course scheduling and listing
(

Case 2
Select the “Schedule a course by hand” radio button, then click choose
Display a page for selecting Course name, section, year, term, classroom, day of the week, and start time.
(

Case 3
Select Course name=COMP248, section=AA, year=2001, term=Winter, classroom=H101, day of the week=FRIDAY, and start time=16:00, then click submit button.
Display Error message “this section could not be properly scheduled” when this hand-chosen schedule is conflict with the existing schedule of other courses
(

Case 4
Select Course name=COMP648, section=AA, year=2001, term=Winter, classroom=any, day of the week=Monday, and start time=any, then click submit button.
Display the schedule information based on the selections
(

Case 5
Select the “Schedule a course by Registra” radio button, then click choose
Display a page for selecting Course name, section, year, term
(

Case 6
Select Course name=COMP666, section=CC, year=2000, term=Winter, then click submit button.
Display the newly scheduled informatioin
(

Case 7
Select Course name=COMP666, section=CC, year=2001, term=Winter, then click submit button.
Display the message “this course does not exist”
(

Case 8
Select the “Auto scheduleing process” radio button, then click choose
Display a page for selecting Department, year, term
(

Case 9
Select Department=EE, year=2001, term=Winter, then click submit button.
Display the newly scheduled informatioin
(

Case 10
Select Department=CS, year=2000, term=summer, then click submit button.
Display the list of newly scheduled information
(

Case 11
Select Department=CS, year=1999, term=summer, then click submit button.
Display the list of newly scheduled information of course COMP554 and COMP647
(

Case 12
Select the “List schedule by department” radio button, then click choose
Display a page for selecting Department, year, term
(

Case 13
Select Department=”All departments ”, year=2001, term=summer, then click submit button.
Display the list of schedule by selected department
(

Case 14
Select Department=CS, year=1999, term=summer, then click submit button.
Display the list of schedule information in the selected department
(

Case 15
Select the “List schedule by program” radio button, then click choose
Display a page for selecting Program name, year, term
(

Case 16
Select Program name =”All programs ”, year=2001, term=summer, then click submit button.
Display the list of schedule by selected department
(


Case 17
Select Program name =”COMP001 ”, year=2000, term=Winter, then click submit button.
Display the list of schedule by selected program 
(

Case 18
Select the “List schedule by course” radio button, then click choose
Display a page for selecting Course Name, Section, Year and Term
(

Case 19
Select Course Name=COMP233, Section=AA, Year=2001and Term=Winter
Display the list of schedule by selected course
(

Case 20
Select Course Name=COMP554, Section=AA, Year=1999 and Term=Winter
Display the list of schedule by selected course
(

Function A3: Schedule exams (Reference to SRD 1.3)
Objective: To test if the exam scheduling function working properly. 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the Exam Scheduling Button
Display a page with 6 radio buttons for selecting Exam scheduling and listing
(

Case 2
Select the “Schedule a Exam by hand” radio button, then click choose
Display a page for selecting Course name, section, year, term, classroom, day of the week, and start time.
(

Case 3
Select Exam name=COMP233, section=AA, year=1999, term=Summer, classroom=any classroom, day of the week=any day, and start time=any time, then click submit button.
Display the newly scheduled exam information based on the selected attributes. 
(

Case 4
Select Exam name=COMP554, section=AA, year=1999, term=Winter, classroom=any classroom, day of the week=any day, and start time=any time, then click submit button.
Display the newly scheduled exam information based on the selected attributes
(

Case 5
Select the “Schedule a Exam by Registra” radio button, then click choose
Display a page for selecting Course name, section, year, term
(

Case 6
Select Course name=COMP666, section=CC, year=2000, term=Winter, then click submit button.
Display the newly scheduled exam information
(

Case 7
Select Exam name=COMP666, section=CC, year=2001, term=Winter, then click submit button.
Display the message “this course does not exist”
(

Case 8
Select the “Auto scheduleing process” radio button, then click choose
Display a page for selecting Department, year, term
(

Case 9
Select Department=All departments, year=1999, term=Summer, then click submit button.
Display the newly scheduled informatioin


(

Case 10
Select Department=EE, year=2001, term=Winter, then click submit button.
Display the newly scheduled informatioin
(

Case 11
Select Department=CS, year=2000, term=summer, then click submit button.
Display the list of newly scheduled information


(

Case 12
Select the “List schedule by department” radio button, then click choose
Display a page for selecting Department, year, term
(

Case 13
Select Department=”All departments ”, year=2001, term=summer, then click submit button.
Display the list of schedule by selected department
(

Case 14
Select Department=CS, year=1999, term=summer, then click submit button.
Display the list of schedule information in the selected department
(

Case 15
Select the “List schedule by program” radio button, then click choose
Display a page for selecting Program name, year, term
(

Case 16
Select Program name =”All programs ”, year=2001, term=Winter, then click submit button.
Display the list of schedule by selected department


(


Case 17
Select Program name =”COMP001 ”, year=2001, term=Winter, then click submit button.
Display the list of schedule by selected program 
(

Case 18
Select the “List schedule by course” radio button, then click choose
Display a page for selecting Exam Name, Section, Year and Term
(

Case 19
Select Exam Name=COMP233, Section=AA, Year=2001 and Term=Winter
Display the list of schedule by selected Exam
(

Case 20
Select Exam Name=COMP554, Section=AA, Year=1999 and Term=Winter
Display the list of schedule by selected Exam
(

Function A4: Classroom list functions (Reference to SRD 1.3)
Objective: To test if the designed functions are working properly
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Classroom List button  
Display a related functions list page. 
(

Function A5: Registration functions (Reference to SRD 1.3)
Objective: To test if the designed registration functions are working properly
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Registration List button  
Display a related functions list page. 
(

Function A6: Student Information functions (Reference to SRD 1.3)
Objective: To test if the designed functions are working properly
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Student Info button  
Display a related functions list page. 
(

Function A7: Faculty Information functions (Reference to SRD 1.3)
Objective: To test if the designed functions are working properly
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Faculty Info button  
Display a related functions list page. 
(

Function A8: Email service functions (Reference to SRD 1.3)
Objective: To test if the designed functions are working properly
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click Email service button  
Display a related functions list page. 
(

5.4.6 Monitor Module Test

Function M1: Create new account  (Reference to SRD 1.3)

Objective: To test if the create account function are working properly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click create account Button
Display a set of entry boxes for input user ID, password, access level, expiry date and status
(

Case 2
Input the value of user ID = 1234567, password = “abc”, access level = 1, expiry date= 09-01-2001, status = 1, then click submit button
Display a message of invalid input
(

Case 3
Input the value of user ID = 1234567, password = “abc”, access level = 1, expiry date= 09/09/01, status = yes, then click submit button
Display a message of create account successfully
(

Function M2: Delete account (Reference to SRD 1.3)

Objective: To test if the delete account function is working correctly 

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the delete account Button
Display a page promote you to input user ID which you want delete
(

Case 2
Input user ID = 3001001
Display a error message which shows invalid user ID
(

Case 3
Input user ID = 1005006
Display message that delete account is successful 
unstable

Function M3: Update Password (Reference to SRD 1.3)
Objective: To test if monitor could update user password
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the update password Button
Display a set of entry for user ID, old password, new password, and new password confirmation.
unstable

Case 2 
Input user id = 1005001, password = abc
Display message of updating password was successful
(

Case 3 
Input user id = 1005011, password = abc
Display ‘update failed’ message
(

Function M4: Update access level (Reference to SRD 1.3)
Objective: To test if monitor could update user access level
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case1
Click the update access level Button
Display a set of entry for user ID, old access level, new access level, and new access level confirmation.
(

Case 2 
Input user id = 1005001, access level = 3
Display message of updating access level was successful
(

Case 3 
Input user id = 1005011, access level = abc
Display ‘update failed’ message
(

Function M5: Enable/Disable Web Account (Reference to SRD 1.3)

Objective: To test if monitor could Enable/Disable Web Account

Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click Enable/Disable Web Account button
Display drop list of enable/ disable, web account 
(

Case 2 
Select disable student account
Display message of student’s account has been disabled
(

Case 3
Select enable student account
Display message of student’s account has been enabled
(

Function M6: web post (Reference to SRD 12.2)

Objective: To test if monitor can post information on the web
Methodology: Black-box testing

Case
Input data
Expected Result
Passed?

Case 1
Click web post button
???
(

6 Glossary

Academic infor


The information for Academic courses

Academic schedules
The module that handles academic schedules.



Acceptance testing
Autonomous tests performed by the end users.  This usually occurs after system tests and prior to acceptance of the final delivered system.

Administrator
The module that handles the processing of all academic activities, such as updating personal information, course and exam scheduling etc.



Admissions
The module that handles applicants’ application to the University.



Applicant
A person who is applying to study at this university.



Application status
Processing status of an applicant



Architecture diagram
A graphic presentation of a software system.  It provides a graphical representation of the major subsystems and their interactions.

ASP
Active server pages.

Black box
A global perspective, based on the specifications or functionality or on a data driven transaction input/output analysis.

Bottom up
The direction of integration is from the lowest level components to the upper most components, integration level.

Clear
When the clear button is pressed, all input on the screen is erased.

Client
End user of the software.

Coding inspection
Individual static review or code, before or after it has been compiled.

Collaborator
Related modules with which a module can interact.

Configuration testing
The tests for verifying that a system works the same or in a similar manner across various platforms, operating systems, database management systems, mixes of other concurrent applications or client/server network configurations.

Constraints
A limitation of a function or a method or a module.

Correctness
The software is functionally correct if it behaves according to the software specifications.

Current student
A student who is currently registered at this University.



Database
Sets of records



Defect
Specific cause of a failure, a defects is also commonly referred to as a "bug".

Delete
By pressing on the delete button, data will be permanently erased from the database.

Development team
A group of people working together to develop software.



Display
A function to show desired information on the screen.



Enable
A function to accept access.



Entity
The basic unit in modeling of abstract objects in a database system.

Event handler
The program that resides on a web server to handle user requests.  It responds to the external and internal events.

Faculty
Distinct academic departments within the University



Faculty ID
A unique number to identify a faculty member.



Faculty member
A person who is a part-time or full-time teaching staff of this University.



Faculty status
A record of faculty member’s registration status.



Faculty tools
The module that provides to faculty members to process all activities pertaining to their own personal and academic records.



Failure
Deviation of a system or component from specified or expected behavior, this definition of failure assumes that the functional specification in itself is adequate or the expectation of the system behavior is reasonable.



Form
An Html page that can collect user input.



Form processing
The procedure of filling in the form, then clicking submit/clear.



Function
A service of data process.



GPA
Grade point average, a measure of student academic performance.



GPD
Graduate program directer

GUI
Graphical user interface.

Home page
The software welcome page.



HTML
Hypertext Markup Language.



IIS


Internet information sever

Identification
The system process to verify a user's username and password.



Input
A source of data to input into a function for processing.



Insert
Add a record in the database.



Integration testing
A test of a combination or sub-assembly of selected components in an overall system.  It usually is incremental, in that it successively integrates larger and more complex combinations of components and are tested in sequence.  It proceeds from the unit level gradually to the full system test (100% integration).

Link
Short for hyperlink: a pointer to another file or document.



Manager
An employee whose position is manager.



MED
Medical School



Message
A statement to notify the user.



MIS
Module interface specification.

Modify or modification


A function to update the existing information in the database.



Monitor
The person who is in charge of the system management.



Monitor tools
The module that handles monitor’s activities, such as update user accounts.



ODBC
Open database connectivity: a set of middleware that provides an interface between user interface programs and relational databases.

Output
The result of a function.



Payment
The fees that student pay, such as tuition fees

Password
A code to be used to access certain part of the UWIS.



Performance
The overall behaviour of the software.  A measure of space / time effective utilization.

Performance testing
The tests weigh a mix of throughput, response time and availability.

PIN
Short for Personal Identification Number.



Potential student
A person who is not yet a student at this university but who is  applying for admission to this University.



Primary foreign key 
A key which is taken from another entity and forms part of the primary key.

Primary key
A single or a combination of attributes of an entity set which can uniquely identify a record within a database.

Program status
Information regarding an academic program.



Protect
To keep safe from losing data, unauthorized accesses to the system.



Public
The user of the system, who is not a student in this university.



Query
To retrieve the data information, which satisfies the criteria from the database.



Register/de-register
A currently enrolled student may add or drop courses.



Registration
A function of course registration, course dropping



Registration module
The module that handles students’ registration and application for MED.



Relational database
Data organized into tables that are composed of rows and columns.

Relationship
The unit linking the basic entities in a database.

Report
Data information presented in a form format.



Robustness
A measurement of how the system behaves in circumstances not anticipated in the requirement specification.



Scheduling
A function to schedule course classrooms and exams.



Search
A function to gain data information, which satisfies certain criteria, form the database.



Service
Work or duty done for customer.



SQL
Structured query language: the standardized language used to manipulate the data in a relational database.

SRD
Software requirements document.

State diagram
A diagram used to show the state space of a given class.  The events that cause a transition from one state to another and the actions that result from a state change, are graphically represented.

Static testing
A test method that does not require execution of source code.

Student ID
A number to uniquely identify a student.

Student Tools
The module that handles students’ personal and academic information.






SsuperID
The ID number of supuerviser

Subsystems
Relatively independent components that together form the whole system.

Supplemental exam
An extra examination for students who cannot attend the normal examination due to medical conditions or exam conflicts.



System testing
Highest level of application functionality testing performed by the system group, or by a combined system and client group, usually occurring on the final and completely assembled product.

Teaching staff
Including full time professors and part time instructors.



Unit testing
Lowest level component, module or subprogram test.  Usually the unit test is the responsibility of the software engineer or author of the component.

URL
Universal resource locator, the address of a file or web site.

Usability testing
The tests offer an effective way to measure and reduce some problems that a first-time user of a system may encounter.

User
A client of the system.



User interface
Communication facilities between the user and the system it provides the viewing/inputting window.



UWIS
University Wide Information System



UWT
University writing test.



Validation
Process of the system verifying a user's username and password.



VBScript
A scripting language based on Visual Basic.



Verification
Determining the system does things right.



Verify
A function to examine whether the data value or its status becomes true or false.



Waterfall system
A system-developing model, with phases of requirements definition, and software design, implementation and unit testing, integration and system testing and operation and maintenance.



Web
World wide web.



Web browser
An application that enables a user to navigate the Web.



Web page
A page which is displayed by a Web browser.



Web server
An operating system that handles Web programming.



White box
A low level, detailed perspective of testing, based on the internal structure of a program or system rather than on the specifications.

7 References

Terry Fancott’s Lecture Notes, Department of Computer Science, Concordia University.

Paquet’s Slides, Department of Computer Science, Concordia University.

Software Engineering, Ian Sommerville (Lancaster University), fifth edition.

Software Requirements Document, Group 5 (Department of Computer Science, Concordia University), April 16, 1999.









































Student







StudSchedule

----------------

…Attributes

ViewExamSche( )

ViewCourSche( )









StudRegistration

----------------

…Attributes

AddCourse( )

DropCourse( )









StudAcadInfo

----------------

…Attributes

ViewAcadInfo( )

UpdateAcadInfo( )

AddAacdInfo( )

DeleteAcadInfo( )







StudPersInfo

----------------

…Attributes

ViewPersInfo( )

UpdatePersInfo( )

AddPersInfo( )

DeletePersInfo( )







GPD 

----------------

links

----------------

Display()





ViewCourseRegInfo

----------------

CID

SCID

SEName

TID

Tyear

----------------

isValid()

FindStudReg()

Display()





ModifyCourse

----------------

CID

Cname

Year

Term

Section

----------------

isValid()

Add( )

Delete( )

Update( )

Display()





ViewStudAcadInfo

----------------

CID

SID

Term

Tyear

Section

Grad

----------------

isValid( )

DispStudAcadInfo()



ViewProfInfo

----------------

FID

Fname

Faddress

Fphone

Femail

----------------

FindProfInfor()

ShowFindProfpInfo()

FindCourseAssigned()

ShowTeachSchedule()





  Administrator





ManWebPage

----------------



View( )

Update( )

Add( )

Delete( )







FacAcdaInfo

----------------



View( )

Update( )

Add( )

Delete( )







StudAcadInfo

----------------



View( )

Update( )

Add( )

Delete( )







ManAccount

----------------



View( )

Update( )

Add( )

Delete( )







StudPersInfo

----------------



View( )

Update( )

Add( )

Delete( )







FacPersInfo

----------------



View( )

Update( )

Add( )

Delete( )







Monitor







MaintainWebPage

-----------------------------



ViewPageList( )

UpdatePage( )

AddPage( )

DeletePage( )

SuspendPage( )









ManageAccount

-------------------------------



ViewAccoList( )

UpdateAcco( )

AddAcco( )

DeleteAcco( )

SuspendAcco( )









User Interface



     Event Handler    

       (ASP, Visual C++)





ODBC



COM

(Common Object Modules)



Database





Web Server

(IIS)













Web Browser





Operating System





� EMBED Word.Picture.8  ���



Unit

Testing



Module

Testing



Sub-System

Testing



System Testing



Acceptance

Testing



USER INTERFACE

(GUI)







ODBC



WEB SEVER

(IIS)





EVENT HANDLER

(ASP/VC++)



Database

(SQL)



report



query



results



SQL



report



HTML



events



query



request



USER INTERFACE

(GUI)



ASP/VC++



events



Advanced User



General User





Software Documents

04/24/01

10

_1045915374

_1049385013.doc
[image: image1.png]


_1041965384.doc


:DBApp





Table





 : Public user





:homepage 





form





:application 





form





:servelet





thread





:academic 





programs





1: displayHomepage





4: fillForm





5: verify data





6: submit





8: return file number





2: displayPublicuser homepage





3: displayAppform





7: save data









