
COMP 249:

Object Oriented

Programming II

Unified Modeling Language (UML)

Introduction to UML

▶ UML is a software design tool that can be used within the context
of any OOP language

▶ UML is a graphical language used for designing and
documenting OOP software

UML

▶ Pseudocode is a way of representing a program in a linear and
algebraic manner.

▶It simplifies design by eliminating the details of the
programming language syntax.

▶Graphical representation systems for program design have also
been used.

▶Flowcharts and structure diagrams for example.

▶ Unified Modeling Language (UML) is yet another graphical
representation formalism.

▶UML is designed to reflect and be used with the OOP
philosophy.

History of UML

▶ As OOP has developed, different groups have developed
graphical or other representations for OOP design.

▶ In 1996, Brady Booch, Ivar Jacobson, and James Rumbaugh
released an early version of UML.

▶Its purpose was to produce a standardized graphical
representation language for object-oriented design and
documentation.

▶ Since then, UML has been developed and revised in response to
feedback from the OOP community.

▶Today, the UML standard is maintained and certified by the
Object Management Group (OMG).

UML Diagrams

▶ Represent the structure.

▶ Extensively used in

documenting the software
architecture of software
systems.

▶ Emphasize what must
happen in the system being
modeled.

▶ Extensively used to describe
the functionality of
software systems.

▶ Emphasize the flow of control
and data among the things in
the system being modeled.

▶ May show how objects
communicate with each
other (i.e. sequence diagram.

UML Class Diagrams (1)

▶ Classes are central to OOP, and the class diagram is the easiest
of the UML graphical representations to understand and use

▶ A class diagram is divided up into three sections

▶The top section contains the class name and applicable
stereotypes (<<abstract>>, <<interface>>…)

▶The middle section contains its data members

▶The bottom section contains its methods

<<stereotype>>
ClassName

attributes

methods

UML Class Diagrams (2)

▶ The data specification for each piece of data in a UML diagram
consists of its name, followed by a colon, followed by its type

▶ Each name is preceded by a character that specifies its access
type (visibility):

▶A minus sign (-) indicates private access

▶A plus sign (+) indicates public access

▶A sharp (#) indicates protected access

▶A tilde (~) indicates package access

UML Class Diagrams (3)

▶ Each method in a UML diagram is indicated by the name of the

method, followed by its parenthesized parameter list, a colon,
and its return type

▶ The access type of each method is indicated in the same way as
for data

UML Class Diagrams (4)

▶ A class diagram do not need to give a complete description of
the class

▶If a given analysis does not require that all the class members

be represented, then those members are not listed in the class
diagram

▶Missing members (those irrelevant to the current description)
are indicated with an ellipsis (three dots)

UML Class Diagrams (5)

An example of a UML class Diagram:

Class Interactions (1)

▶ Rather than show just the interface of a class, class diagrams are
primarily designed to show the interactions among classes

▶ UML has various ways to indicate the information flow from one
class object to another using different sorts of annotated arrows

▶ UML has annotations for class groupings into packages, for
inheritance, and for other interactions

▶ In addition to these established annotations, UML is extensible

Class Interactions (2)

▶ To represent inheritance between classes:

▶Each base class is drawn above its derived class(es)

▶An upward pointing arrow is drawn between them to indicate
the inheritance relationship. The arrows also help in locating
method definitions.

Class Interactions (3)

▶ Packages can be represented in a class diagram by a rectangle
with the package name

▶ All the member classes are placed within the rectangle

Human

Software tools

Many software tools can be used to draw UML diagrams such as:

▶Microsoft Visio

▶Smart Draw

▶ObjectAid plugin for Eclipse

Some tools are available online:

▶draw.io (https://www.draw.io/)

Using draw.io

Use the UML drop-down menu.

Most of the common shapes are already
defined.

By hovering over a shape and dragging a
corner over to another shape, you can create

connectors, which can then be used to
represent inheritance and other associations.

