COMP 249:
Object Oriented
Programming I

Unified Modeling Language (UML)

Introduction to UML

[»] UML is a software design tool that can be used within the context
of any OOP language

[»] UML is a graphical language used for designing and
documenting OOP software

UML

[»] Pseudocode is a way of representing a program in a linear and
algebraic manner.

]It simplifies design by eliminating the details of the
programming language syntax.

[»] Graphical representation systems for program design have also
been used.

[»]Flowcharts and structure diagrams for example.

[>] Unified Modeling Language (UML) is yet another graphical
representation formalism.

[»]JUML is designed to reflect and be used with the OOP
philosophy.

History of UML

[»] As OOP has developed, different groups have developed
graphical or other representations for OOP design.

] In 1996, Brady Booch, Ivar Jacobson, and James Rumbaugh
released an early version of UML.

[»]Its purpose was to produce a standardized graphical
representation language for object-oriented design and
documentation.

[»] Since then, UML has been developed and revised in response to
feedback from the OOP community.

[»]Today, the UML standard is maintained and certified by the
Object Management Group (OMG).

UML Diagrams

[*] Represent the structure. Diagram
_ _ ,_f|5] Emphasize what must
[*] Extensively usedin happen in the system being
documenting the software ' = modeled.
. — Structure Behaviour
architecture of software Diagram Diagram] Ex’rensively used to describe
systems. A\ A the functionality of
| | | | software systems.
Class Component Object Activity Use Case \
Ciagram Ciagram Diagram Ciagram Ciagram
, [>] Emphasize the flow of control
: and data among the things in
Profile Composite Deployment Package Interaction State the system being modeled.
Diagram Structure Diagram Diagram Diagram Machine
Diagram Ay Diagram [*] May show how objects
communicate with each
[[| other (i.e. sequence diagram.

Sequence Communication Interaction Timing
Notation: UML I Diagram Diagram O_.rer\.rlew Diagram
Diagram

UML Class Diagrams (1)

[»] Classes are central to OOP, and the class diagram is the easiest
of the UML graphical representations to understand and use

[»] A class diagram is divided up into three sections

[»]The top section contains the class name and applicable
stereotypes (<<abstract>>, <<interface>>...)

[»]The middle section contains its data members
[»]The bottom section contains its methods

<<stereotype>>
ClassName

attributes

methods

UML Class Diagrams (2)

[»] The data specification for each piece of data in a UML diagram
consists of its name, followed by a colon, followed by its type

[»] Each hame is preceded by a character that specifies its access

type (visibility):
»]A minus sign (-) indicates private access
A plus sign (+) indicates public access

MEiimii

A sharp (#) indicates protected access
[>]A tilde (~) indicates package access

Marker [Visibility
+ public
- private
protected

package

UML Class Diagrams (3)

[»] Each method in a UML diagram is indicated by the name of the
method, followed by its parenthesized parameter list, a colon,
and ifs return type

[»] The access type of each method is indicated in the same way as
for data

UML Class Diagrams (4)

[»] A class diagram do not need to give a complete description of
the class

[»]If a given analysis does not require that all the class members
be represented, then those members are not listed in the class
diagram

[»|Missing members (those irrelevant to the current description)
are indicated with an ellipsis (three dots)

UML Class Diagrams (5)

An example of a UML class Diagram:

- side: dnuble
- xCoordinate: dnuble : |
- yCoordinate: dnublel ; :

+§resize(doﬁb1e newSi&e) void -
+.move(double newX, dnuble new?) void
erase(): void

Class Interactions (1)

[»] Rather than show just the interface of a class, class diagrams are
primarily designed to show the interactions among classes

[»] UML has various ways to indicate the information flow from one
class object to another using different sorts of annotated arrows

[»] UML has annotations for class groupings into packages, for
inheritance, and for other interactions

[»] In addition to these established annotations, UML is extensible

Class Interactions (2)

[»] To represent inheritance between classes:
[»]Each base class is drawn above its derived class(es)

[»]An upward pointing arrow is drawn between them to indicate
the inheritance relationship. The arrows also help in locating
method definitions. |

erived
dss.

Arrows go from a
class to its base ci

- N

Class Interactions (3)

[»] Packages can be represented in a class diagram by a rectangle
with the package name

[»] All the member classes are placed within the rectangle

Human

name: String

+ setName(String newName): void

4 getName(): String.
+-toString() : String
+ sameName (Person otherPerson)): boolean

- 'studentNumber: int

+ set(String newName, § :
int newStudentNumber): void :

+ getStudentNumber(): int

+ setStudentNumber(‘ :
int newStudentNumber): void :

+ toString(): String ;

+-equals(Object otherObject): boolean

Software tools

Many software tools can be used to draw UML diagrams such as:

»|Microsoft Visio

Smart Draw

Mkl

ObjectAid plugin for Eclipse

Some tools are available online:
[»]draw.io (https://www.draw.io/)

n uml
File Edit View Amange Exiras Help Unsaved changes. Click here to save.

m 100% Q Q r

Using draw.io =

Use the UML drop-down menu. L S
= = :ﬁem: tyFIE;.:El.EI.s.sl

Most of the common shapes are already —— + method(type) type

defined. me

B R

By hovering over a shape and dragging @
corner over to another shape, you can create
connectors, which can then be used to
represent inheritance and other associations.

= Classl = Class?

+ field: type + field: type 1

A

+ method(type): type + method(type): type

