// ***
// Polymorphism1.java By: Aiman Hanna (C) 1993 - 2023
// This program illustrates the subject of "polymorphism" and
// dynamic/late binding.
//
// Key Points:
// 1) Late binding.
// ***
// Vehicle Class
class Vehicle {

// Attributes

protected int numOfDoors;

protected double price;

// Constructors

public Vehicle()
// default constructor

{

System.out.println("\nCreating a vehicle object using default constructor");

numOfDoors = 4;

price = 10000;

}

public Vehicle(int nd, double pr)

{

System.out.println("\nCreating a vehicle object using parameterized constructor");

numOfDoors = nd;

price = pr;

}

public Vehicle(Vehicle vec)
// copy constructor

{

System.out.println("\nCreating a vehicle object using copy constructor");

numOfDoors = vec.numOfDoors;

price = vec.price;

}

public int getNumOfDoors()

{

return numOfDoors;

}

public void setNumOfDoors(int nd)

{

numOfDoors = nd;

}

public double getPrice()

{

// Obtain the class name just for display purposes

String s = this.getClass().toString();

s = s.substring(6); // Remove the word "class" to get only the class name

System.out.println("Executing getPrice() from the " + s +

" class. The price is " + price + "$.");

return price;

}

public void setPrice(double pr)

{

price = pr;

}

public String toString()

{

return "This Vehicle has " + numOfDoors +

" doors and it price is " + price + "$.";

}

// Find out if that vehicle has a cheaper price than the passed vehicle

public boolean isCheaper(Vehicle v)

{

// Obtain the class names just for display purposes

String s1 = this.getClass().toString(), s2 = v.getClass().toString();

s1 = s1.substring(6); // Remove the word "class" to get only the class name

s2 = s2.substring(6);

if(getPrice() < v.getPrice())

{

System.out.println("The price of this " + s1 +

" object is cheaper than the price of the passed " +

s2 + " object.");

return true;

}

else

{

System.out.println("The price of this " + s1 +

" object is NOT cheaper than the price of the passed " +

s2 + " object.");

return false;

}

}
} // end of Vehicle class
// Bus Class - This is a derived class from the Vehicle Class; that is it
// inherits the Vehicle class
class Bus extends Vehicle{

// Attributes

private int passengerCapacity;

// Constructors

public Bus()
// default constructor

{

System.out.println("Creating a bus object using default constructor");

passengerCapacity = 10;

}

public Bus(int pc)

{

System.out.println("Creating a bus object using parameterized constructor");

passengerCapacity = pc;

}

public Bus(Bus b)

{

System.out.println("Creating a bus object using copy constructor");

setNumOfDoors(b.getNumOfDoors());

setPrice(b.getPrice());

passengerCapacity = b.passengerCapacity;

}

// A constructor that would allow the setting of the price and the number of doors

// and the passenger capacity

public Bus(int nd, double pr, int pc)

{

this(pc);
// Call the constructor that sets the passenger capacity

System.out.println("Creating a bus object using parameterized constructor for full settings....\n");

// Notice that we now cannot call super to set the other two attributes

// (i.e. super(nd, pr);) since either "this" or 'super" must be the first

// statement, and it is not possible to have both of them as such!

setPrice(pr);

setNumOfDoors(nd);

}

public int getPassangerCapacity()

{

return passengerCapacity;

}

public void setPassengerCapacity(int pc)

{

passengerCapacity = pc;;

}

public String toString()

{

return "This Bus has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The passenger capacity of this bus is " + passengerCapacity + ".";

}

// Override the setPrice() method

public void setPrice(double pr)

{

if(pr < getPrice())

System.out.println("The price of this bus will be reduced from " + getPrice() + "$ to " + pr + "$.");

else if (pr > getPrice())

System.out.println("The price of this bus will be increased from " + getPrice() + "$ to " + pr + "$.");

else

System.out.println("No change will be applied to this price of the bus.");

super.setPrice(pr);

// Notice that you cannot access "price" directly since it is private to the base class

// i.e. price = pr; would be illegal

}

public double getPrice()

{

// Obtain the class name

// String s = this.getClass().toString();

// s = s.substring(6);

// We can surely execute the above code, but let us just hard-code it to

// see clearly that the method is different than the one in the other classes

String s = "Bus";

System.out.println("Executing getPrice() from the " + s +

" class. The price is " + price + "$.");

return price;

}
} // end of Bus class
//Car Class - This is a derived class from the Vehicle Class.
//For a Car object, we are interested in its number of seats
class Car extends Vehicle{

// Attributes

private int numOfSeats;

// Constructors

public Car()
// default constructor

{

System.out.println("Creating a car object using default constructor");

numOfSeats = 5;

}

public Car(int nd, double pr, int ns)

{

super(nd, pr);

System.out.println("Creating a car object using parameterized constructor");

numOfSeats = ns;

}

public Car(Car c)

{

System.out.println("Creating a car object using copy constructor");

setNumOfDoors(c.getNumOfDoors());

setPrice(c.getPrice());

numOfSeats = c.numOfSeats;

}

public int getNumOfSeats()

{

return numOfSeats;

}

public void setNumOfSeats(int ns)

{

numOfSeats = ns;;

}

public String toString()

{

return "This Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this car is " + numOfSeats + ".";

}

public double getPrice()

{

// Obtain the class name

// String s = this.getClass().toString();

// s = s.substring(6);

// We can surely execute the above code, but let us just hard-code it to

// see clearly that the method is different than the one in the other classes

String s = "Car";

System.out.println("Executing getPrice() from the " + s +

" class. The price is " + price + "$.");

return price;

}
} // end of Car class
//SportCar Class - This is a derived class from the Car Class
//For a SportCar object, we are interested in its gas consumption
// as gallon per 100 miles
class SportCar extends Car{

// Attributes

private double gasConsumption;

// Constructors

public SportCar()
// default constructor

{

System.out.println("Creating a sport car object using default constructor");

gasConsumption = 4;

}

public SportCar(int nd, double pr, int ns, double gc)

{

super(nd, pr, ns);

System.out.println("Creating a sport car object using parameterized constructor");

gasConsumption = gc;

}

public SportCar(SportCar sc)

{

System.out.println("Creating a sport car object using copy constructor");

setNumOfDoors(sc.getNumOfDoors());

setPrice(sc.getPrice());

setNumOfSeats(sc.getNumOfSeats());

gasConsumption = sc.gasConsumption;

}

public double getGasConsumption()

{

return gasConsumption;

}

public void setGasConsumption(double gc)

{

gasConsumption = gc;;

}

public String toString()

{

return "This Sport Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this Sport Car is " + getNumOfSeats() +

"\nand its gas consumption is " + gasConsumption + " gallons/100-mile.";

}

public double getPrice()

{

// Obtain the class name

// String s = this.getClass().toString();

// s = s.substring(6);

// We can surely execute the above code, but let us just hard-code it to

// see clearly that the method is different than the one in the other classes

String s = "SportCar";

System.out.println("Executing getPrice() from the " + s +

" class. The price is " + price + "$.");

return price;

}
} // end of Sport Car class
//RaceCar Class - This is a derived class from the SportCar Class
//For a RaceCar object, we are interested in its horse power
class RaceCar extends SportCar{

// Attributes

private int horsePower;

// Constructors

public RaceCar()
// default constructor

{

System.out.println("Creating a race car object using default constructor");

horsePower = 400;

}

public RaceCar(int nd, double pr, int ns, double gc, int hp)

{

super(nd, pr, ns, gc);

System.out.println("Creating a race car object using parameterized constructor");

horsePower = hp;

}

public RaceCar(RaceCar rc)

{

System.out.println("Creating a race car object using copy constructor");

setNumOfDoors(rc.getNumOfDoors());

setPrice(rc.getPrice());

setNumOfSeats(rc.getNumOfSeats());

setGasConsumption(rc.getGasConsumption());

horsePower = rc.horsePower;

}

public int getHorsePower()

{

return horsePower;

}

public void setHorsePower(int hp)

{

horsePower = hp;

}

public String toString()

{

return "This Race Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this Race Car is " + getNumOfSeats() +

"\nand its gas consumption is " + getGasConsumption() + " gallons/100-mile." +

"The horse power of this Race Car is: " + horsePower + ".";

}

public double getPrice()

{

// Obtain the class name

// String s = this.getClass().toString();

// s = s.substring(6);

// We can surely execute the above code, but let us just hard-code it to

// see clearly that the method is different than the one in the other classes

String s = "RaceCar";

System.out.println("Executing getPrice() from the " + s +

" class. The price is " + price + "$.");

return price;

}
} // end of Race Car class
public class Polymorphism1{

// A method that would accept any vehicle object and displays its information

public static void showVehicleInfo(Vehicle v)

{

System.out.println("Here is the information of this vehicle");

System.out.println(v);

System.out.println();

}

public static void main(String[] args) {

System.out.println("Will create two Vehicle objects");

Vehicle v1 = new Vehicle(), v2 = new Vehicle(4, 5000);

v1.setPrice(22000);

v2.setPrice(16700);

System.out.println();

System.out.println("Will create three Bus objects");

Bus b1 = new Bus(2, 55000, 37), b2 = new Bus(3, 62000, 55), b3 = new Bus(b1);

System.out.println();

System.out.println("Will create two Car objects");

Car c1 = new Car(4, 12000, 5), c2 = new Car(2, 26000, 2);

System.out.println();

System.out.println("Will create two Sport Car objects");

SportCar sc1 = new SportCar(4, 12000, 5, 3), sc2 = new SportCar(3, 18500, 4, 4);

System.out.println();

System.out.println("Will create two Race Car objects");

RaceCar rc1 = new RaceCar(4, 67000, 2, 4, 400), rc2 = new RaceCar(3, 85000, 4, 4, 450);

System.out.println("\nComparing the prices of different vehicles");

System.out.println("==\n");

v1.isCheaper(v2);

System.out.println();

v2.isCheaper(rc1);

System.out.println();

sc1.isCheaper(b2);

System.out.println();

b3.isCheaper(c1);

System.out.println();

c2.isCheaper(sc2);

System.out.println();

sc2.isCheaper(v2);

System.out.println();

rc2.isCheaper(rc1);

}
}
/* The Output
Will create two Vehicle objects
Creating a vehicle object using default constructor
Creating a vehicle object using parameterized constructor
Will create three Bus objects
Creating a vehicle object using default constructor
Creating a bus object using parameterized constructor
Creating a bus object using parameterized constructor for full settings....
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
The price of this bus will be increased from 10000.0$ to 55000.0$.
Creating a vehicle object using default constructor
Creating a bus object using parameterized constructor
Creating a bus object using parameterized constructor for full settings....
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
The price of this bus will be increased from 10000.0$ to 62000.0$.
Creating a vehicle object using default constructor
Creating a bus object using copy constructor
Executing getPrice() from the Bus class. The price is 55000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
Executing getPrice() from the Bus class. The price is 10000.0$.
The price of this bus will be increased from 10000.0$ to 55000.0$.
Will create two Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Will create two Sport Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Will create two Race Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a race car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a race car object using parameterized constructor
Comparing the prices of different vehicles
==
Executing getPrice() from the Vehicle class. The price is 22000.0$.
Executing getPrice() from the Vehicle class. The price is 16700.0$.
The price of this Vehicle object is NOT cheaper than the price of the passed Vehicle object.
Executing getPrice() from the Vehicle class. The price is 16700.0$.
Executing getPrice() from the RaceCar class. The price is 67000.0$.
The price of this Vehicle object is cheaper than the price of the passed RaceCar object.
Executing getPrice() from the SportCar class. The price is 12000.0$.
Executing getPrice() from the Bus class. The price is 62000.0$.
The price of this SportCar object is cheaper than the price of the passed Bus object.
Executing getPrice() from the Bus class. The price is 55000.0$.
Executing getPrice() from the Car class. The price is 12000.0$.
The price of this Bus object is NOT cheaper than the price of the passed Car object.
Executing getPrice() from the Car class. The price is 26000.0$.
Executing getPrice() from the SportCar class. The price is 18500.0$.
The price of this Car object is NOT cheaper than the price of the passed SportCar object.
Executing getPrice() from the SportCar class. The price is 18500.0$.
Executing getPrice() from the Vehicle class. The price is 16700.0$.
The price of this SportCar object is NOT cheaper than the price of the passed Vehicle object.
Executing getPrice() from the RaceCar class. The price is 85000.0$.
Executing getPrice() from the RaceCar class. The price is 67000.0$.
The price of this RaceCar object is NOT cheaper than the price of the passed RaceCar object.
*/
