// *******************************************************************
// LinkedList9.java By: Aiman Hanna (C) 1993 - 2023
// This program illustrates iterators. The program is indented only  
// to provide an introduction to iterators, so it is kept as simple 
// as possible. You should hence note that there are some obvious 
// situations where this code may misbehave. Look for "WARNING" in the 
// text. This is just an example of such potential misbehavior. 
// You should also look at the output for cases when exceptions will 
// be thrown by the program. 
//
// Key Points:
// 1) Iterators.  
// *******************************************************************
import java.util.Scanner;
import java.util.NoSuchElementException;
// A generic linked list class that uses the generic Node class
// Notice the bounded use of type T
class List

{

// An inner class.

// Node class. Each node has an integer and a link to the next node (or null). 

private class Node

{


private int x;



private Node next;
// A link to the next node


// Default constructors 


public Node()


{



x = 0;



next = null;


}


// Parameterized constructor 


public Node(int y, Node xt)


{



x = y;





next = xt;


}


public void setX(int y)


{



x = y;




}


public void setNext(Node xt)


{



next = xt;


}


public int getX()


{



return x;



}


public Node getNext()


{



return next;


}

}
// end of Node<T> inner class

// An inner iterator class 

public class ListIterator 

// ListIterator is just a name; it can be given a different name 

{


// Two attributes. Except for special cases, such as empty list, "current" will always point


// to a specific location on the list, where various operations will take place. "previous" 


// points to the node preceding the one pointed by "current" 


private Node current;


private Node previous;


// Resets the pointers


public void reset()


{



current = head;

// This is the attribute "head" of the outer class



previous = null;


}


// Find out if there are more nodes after the one pointed by "current". "current" is allowed 


// to move to the null pointed by the last node in the list, and so hasNext will still 

// return true if "current" is pointing to the last node in the list at the time it is called. 


public boolean hasNext()


{



if(current == null)




return false;

// No next nodes (from the current position) are there in the list 



else 




return true;


}


// Return the value of the node pointed by "current", then moves both "current" and "previous" 


// ahead by one node


public int next()


{



if(!hasNext())



{




System.out.println("ERROR: Pointing to NULL. No value to return and cannot move forward!
  Program will terminate. \n");




throw new NoSuchElementException();



}



else 

// You do not really need that else. You are only here if nothing is thrown



{




int val = current.x;




previous = current;

// Move to the following node 




current = current.next;

// Move to the following node 
 




return val;



}


}


// Return the value of the node pointed by "current", but do NOT move "current" or "previous" 


public int peek()


{



if(!hasNext())



{




System.out.println("ERROR: Pointing to NULL. Cannot peek from that node! Program will
  terminate. \n");




throw new NoSuchElementException();



}



else 



{




return current.x;



}


}


// Adds a new node before current. "current" does not move; "previous" moves to point to this new node


public void addBeforeCurrent(int v)


{



if(head == null)
// List is empty



{




head = new Node(v, null);




current = head;




previous = null;



}



else if (current == head)
// current points to the first node in the list



{




previous = new Node(v, head);




head = previous;



}



else 



{




previous.next = new Node(v, previous.next);




previous = previous.next;



}


}


// Change the contents of the node pointed by "current"


public void change(int v)


{



if(!hasNext())



{




System.out.println("ERROR: Pointing to NULL. Cannot change value! Program will terminate. \n");




throw new NoSuchElementException();



}



else 



{




current.x = v;



}


}


// Delete the node pointed by "current"; and move "current" to the next node


public void delete()


{



if(!hasNext())



{




System.out.println("ERROR: Pointing to NULL. Cannot delete node! Program will terminate. \n");




throw new NoSuchElementException();



}



if(current == head)

// Case when current is pointing at the first node



{




current = current.next;




head = current;



}



else 



{




previous.next = current.next;




current = previous.next;



}


}

}

private Node head;

// Default constructor

public List()

{


head = null;

}

// Copy constructor -  use the clone() method of the Node class

// Does this really work? Is the result a deep copy? 

public List(List lst)

{


if(lst == null) throw new NullPointerException();


if (lst.head == null)



head = null;


else


{



// Call our copyList() method to copy the list



head = copyList(lst.head);


}

}

// A method that returns an iterator to for "this" List object

public ListIterator createIterator()

{


return new ListIterator();

}

// A method that adds a node to the start of the list

// WARNING: This method does not manipulate the iterator, and hence 

// programmers must either reset the iterators when this method is called or

// write additional code to adjust the iterators 

public void addToStart(int v)

{


head = new Node(v, head);


}

// A method that removes a node form the start of the list 

public boolean deleteFromStart()

// WARNING: This method does not manipulate the iterator, and hence 

// programmers must either reset the iterators when this method is called or

// write additional code to adjust the iterators 

{


if (head != null)


{



head = head.next;
// Access to inner class private attributes are possible 



return true;


}


else



return false;

}

// A method to return the size of the list

public int size()

{


int ctr = 0;


Node temp = head;
// Point to the start of the list


while( temp!= null)


{



ctr++;



temp = temp.next;



}


return ctr;

}

// A method that searches the list for a given value and returns the first node that has this 

// value of null if no node exists with this value

private Node find(int v)



{


Node temp = head;


while( temp != null )


{



if (temp.x == v)



{




return temp;





}









temp = temp.next;

// Move temp to the next node


}


// If this point is reached then the car was not found in the list


return null;

}

// A method that indicates whether or not a a node in the list has some value

public boolean contains(int v)

{


if(find(v) != null)



return true;


else 



return false;

}

public void showListContents()

{


Node temp = head;


if (temp == null)



System.out.println("There is nothing to display; list is empty." );


else



System.out.println("Here are the contents of the list." );


while(temp != null)


{



System.out.print("" + temp.x  + " ---> ");



temp = temp.next;




}


System.out.println("X");
// Just show "X" indicating the end of the list (null)

}

// This clone() method will perform the entire copying operation itself instead of 

// just calling the copy constructor 

public List clone()

{


// First call the clone() method from the Object class. This will 


// verify whether the class implements the Cloneable interface. If this test 


// passes, then a copy of the object is returned. However this copy is a 


// shallow copy, so further operations need to be done after that to create a 


// deep copy


try


{



List newLst = (List)super.clone();



if (head == null)




newLst.head = null;



else




// Call our copyList() method to copy the list




newLst.head = copyList(head);



return newLst;


}


catch (CloneNotSupportedException e)


{
//This should not happen



return null;


}

}

// Given a Node pointer that is not null, this method create and return

// a deep copy of this list pointed by this pointer

private Node copyList(Node n1)

{


Node temp = n1;


Node newHead = null;


Node end = null;

// This pointer will always point at the end of the new list 








// while it is being created (growing)


newHead = new Node(temp.x, null);




end = newHead;


temp = temp.next;


while (temp != null)


{



end.next = new Node(temp.x, null);



end = end.next;



temp = temp.next;


}


// Now the entire list is created, just return its head pointer


return newHead;

}
}
public class LinkedList9{

public static void main(String[] args) 

{


Scanner kb = new Scanner(System.in);


int i;


// Create a list


List lst1 = new List();


// Create an iterator for that list


List.ListIterator iter1 = lst1.createIterator();


System.out.println("A list of Cars has been created. Its current size is: " + lst1.size());


System.out.print("You can add nodes to the list by entering some values; enter -1 to terminate: ");


i = kb.nextInt();


while (i != -1)


{



lst1.addToStart(i);



i = kb.nextInt();


}


if(lst1.size() != 0)


{



System.out.println("\nItems were added to the list. The list current size is: " + lst1.size());




lst1.showListContents();


}


// Now start using the iterator


iter1.reset();


i = 0;


// Move the iterator 3 places ahead if the list has these many node; 


// otherwise, it moves to the end of the list


while (iter1.hasNext() && i++ < 3)


{



iter1.next();


}


System.out.println("\nThe current node pointed by the iterator is: " + iter1.peek());



// Change the value of the node pointed by the iterator


iter1.change(190);


// Add few nodes before the "current" pointer of the iterator


iter1.addBeforeCurrent(300);


iter1.addBeforeCurrent(400);


iter1.addBeforeCurrent(500);


iter1.addBeforeCurrent(600);


System.out.println("\nThe list current size is: " + lst1.size());



lst1.showListContents();


// Move the iterator two location ahead if possible and delete that node (if exists) 


iter1.next();


iter1.next();


System.out.println("\nThe current node pointed by the iterator is: " + iter1.peek());



System.out.println("\nAttempting to delete the node pointed by the iterator ");


iter1.delete();


System.out.println("\nThe list current size is: " + lst1.size());



lst1.showListContents();


System.out.println("\nThanks for using our Linked List & Iterators. Goodbye.");

}
}
/* The Output  
A list of Cars has been created. Its current size is: 0
You can add nodes to the list by entering some values; enter -1 to terminate: 10 20 30 40 50 60 70 80 90 -1
Items were added to the list. The list current size is: 9
Here are the contents of the list.
90 ---> 80 ---> 70 ---> 60 ---> 50 ---> 40 ---> 30 ---> 20 ---> 10 ---> X
The current node pointed by the iterator is: 60
The list current size is: 13
Here are the contents of the list.
90 ---> 80 ---> 70 ---> 300 ---> 400 ---> 500 ---> 600 ---> 190 ---> 50 ---> 40 ---> 30 ---> 20 ---> 10 ---> X
The current node pointed by the iterator is: 40
Attempting to delete the node pointed by the iterator 
The list current size is: 12
Here are the contents of the list.
90 ---> 80 ---> 70 ---> 300 ---> 400 ---> 500 ---> 600 ---> 190 ---> 50 ---> 30 ---> 20 ---> 10 ---> X
Thanks for using our Linked List & Iterators. Goodbye.
*/
/* Run Again
A list of Cars has been created. Its current size is: 0
You can add nodes to the list by entering some values; enter -1 to terminate: 10 20 30 40 50 -1
Items were added to the list. The list current size is: 5
Here are the contents of the list.
50 ---> 40 ---> 30 ---> 20 ---> 10 ---> X
The current node pointed by the iterator is: 20
The list current size is: 9
Here are the contents of the list.
50 ---> 40 ---> 30 ---> 300 ---> 400 ---> 500 ---> 600 ---> 190 ---> 10 ---> X
ERROR: Pointing to NULL. Cannot peek from that node! Program will terminate. 
Exception in thread "main" java.util.NoSuchElementException

at List$ListIterator.peek(LinkedList9.java:128)

at LinkedList9.main(LinkedList9.java:430)

*/
