// ***
// LinkedList8.java By: Aiman Hanna (C) 1993 - 2023
// This program illustrates generic linked list, and the clone() method.
// The program fixes the problem that LinkedList7.java suffers.
// Since the clone() method of the Object class is protected, it can only be
// accessed through derived classes.

//
// Key Points:
// 1) Generic Linked Lists.
// 2) The clone() method.
// ***
import java.util.Scanner;
// Note: It is better to place this interface in a separate file and make it public, however
// for now, we will just keep it here for easier illustration
// Write our own version of an interface that extends the Cloneable interface
interface Cloneable2 extends Cloneable
{

public Object clone();
// Now any class that implements this

// interface must define the clone() method
}
class Car implements Cloneable2{

// Attributes

private int numOfDoors;

private double price;

private long serialNum;

private static long serialNumCtr = 3000;

// Constructors

public Car()
// default constructor

{

numOfDoors = 4;

price = 10000;

serialNum = serialNumCtr++;

}

public Car(int nd, double pr)

{

numOfDoors = nd;

price = pr;

serialNum = serialNumCtr++;

}

public Car(Car c)

{

setNumOfDoors(c.numOfDoors);

setPrice(c.price);

serialNum = serialNumCtr++;

}

public int getNumOfDoors()

{

return numOfDoors;

}

public void setNumOfDoors(int nd)

{

numOfDoors = nd;

}

public double getPrice()

{

return price;

}

public long getserialNumber()

{

return serialNum;

}

public void setPrice(double pr)

{

price = pr;

}

public String toString()

{

return ("Car with serial number: " + serialNum + " has " + numOfDoors + " doors and its price is: " + price + "$.");

}

public Car clone()

{

return new Car(this);
// Create and return a new Car using the copy constructor

}
} // end of Car class
// A generic linked list class that uses the generic Node class
// Notice the bounded use of type T

// T must extend Cloneable2. List can however implement Cloneable2 or Cloneable
class List<T extends Cloneable2> implements Cloneable2

{

// An inner class.

// Node class. Each node has an object of type T and a link to the next node (or null).

private class Node<T>

{

private T x;

private Node<T> next;
// A link to the next node

// Default constructors

public Node()

{

x = null;

next = null;

}

// Parameterized constructor

public Node(T y, Node<T> xt)

{

x = y;

next = xt;

}

public void setX(T y)

{

x = y;

}

public void setNext(Node<T> xt)

{

next = xt;

}

public T getX()

{

return x;

}

public Node<T> getNext()

{

return next;

}

}
// end of Node<T> inner class

private Node<T> head;

// Default constructor

public List()

{

head = null;

}

// Copy constructor - use the clone() method of the Node class

// Does this really work? Is the result a deep copy?

public List(List<T> cl)

{

if(cl == null) throw new NullPointerException();

if (cl.head == null)

head = null;

else

{

// Call our copyList() method to copy the list

head = copyList(cl.head);

}

}

// A method that adds a node to the start of the list

public void addToStart(T c)

{

head = new Node<T>(c, head);

}

// A method that removes a node form the start of the list

public boolean deleteFromStart()

{

if (head != null)

{

head = head.next;
// Access to inner class private attributes are possible

return true;

}

else

return false;

}

// A method to return the size of the list

public int size()

{

int ctr = 0;

Node<T> temp = head;
// Point to the start of the list

while(temp!= null)

{

ctr++;

temp = temp.next;

}

return ctr;

}

// A method that searches the list for a given value and returns the first node that has this

// value of null if no node exists with this value

private Node<T> find(T y)

{

Node<T> temp = head;

while(temp != null)

{

if (temp.x == y)

{

return temp;

}

temp = temp.next;

// Move temp to the next node

}

// If this point is reached then the car was not found in the list

return null;

}

// A method that indicates whether or not a a node in the list has some value

public boolean contains(T y)

{

if(find(y) != null)

return true;

else

return false;

}

public void showListContents()

{

Node<T> temp = head;

if (temp == null)

System.out.println("There is nothing to display; list is empty.");

else

System.out.println("Here are the contents of the list.");

while(temp != null)

{

System.out.println("["+ temp.x + "] ---> ");

temp = temp.next;

}

System.out.println("X");
// Just show "X" indicating the end of the list (null)

}

// This clone() method will perform the entire copying operation itself instead of

// just calling the copy constructor

public List<T> clone()

{

// First call the clone() method from the Object class. This will

// verify whether the class implements the Cloneable interface. If this test

// passes, then a copy of the object is returned. However this copy is a

// shallow copy, so further operations need to be done after that to create a

// deep copy

try

{

List<T> newCL = (List<T>)super.clone();

if (head == null)

newCL.head = null;

else

// Call our copyList() method to copy the list

newCL.head = copyList(head);

return newCL;

}

catch (CloneNotSupportedException e)

{
//This should not happen

return null;

}

}

// Given a Node pointer that is not null, this method create and return

// a deep copy of this list pointed by this pointer

private Node<T> copyList(Node<T> cn1)

{

Node<T> temp = cn1;

Node<T> newHead = null;

Node<T> end = null;

// This pointer will always point at the end of the new list

// while it is being created (growing)

newHead = new Node<T>((T)(temp.x).clone(), null);

end = newHead;

temp = temp.next;

while (temp != null)

{

end.next = new Node<T>((T)(temp.x).clone(), null);

end = end.next;

temp = temp.next;

}

// Now the entire list is created, just return its head pointer

return newHead;

}
}
public class LinkedList8{

public static void main(String[] args)

{

Scanner kb = new Scanner(System.in);

Car c1 = new Car(4, 12000), c2 = new Car(5, 43000), c3 = new Car(),

 c4 = new Car(2, 19000), c5 = new Car(3, 37000), c6 = new Car(2, 52000);

long sn;

// Create two lists

List<Car> crlst1 = new List<Car>(), crlst2 = null;

System.out.println("A list of Cars has been created. Its current size is: " + crlst1.size());

System.out.println("Will add few cars to the list.");

crlst1.addToStart(c2);

crlst1.addToStart(c5);

crlst1.addToStart(c3);

crlst1.addToStart(c1);

crlst1.addToStart(c4);

crlst1.addToStart(c6);

System.out.println("\nThe list current size is: " + crlst1.size());

crlst1.showListContents();

// Now clone crlst1 to crlst2

crlst2 = crlst1.clone();

System.out.println("\nList has been cloned to another. Here are the contents of the cloned list: ");

crlst2.showListContents();

System.out.println("\nThanks for using our Linked List. Goodbye.");

}
}
/* The Output
A list of Cars has been created. Its current size is: 0
Will add few cars to the list.
The list current size is: 6
Here are the contents of the list.
[Car with serial number: 3005 has 2 doors and its price is: 52000.0$.] --->
[Car with serial number: 3003 has 2 doors and its price is: 19000.0$.] --->
[Car with serial number: 3000 has 4 doors and its price is: 12000.0$.] --->
[Car with serial number: 3002 has 4 doors and its price is: 10000.0$.] --->
[Car with serial number: 3004 has 3 doors and its price is: 37000.0$.] --->
[Car with serial number: 3001 has 5 doors and its price is: 43000.0$.] --->
X
List has been cloned to another. Here are the contents of the cloned list:
Here are the contents of the list.
[Car with serial number: 3006 has 2 doors and its price is: 52000.0$.] --->
[Car with serial number: 3007 has 2 doors and its price is: 19000.0$.] --->
[Car with serial number: 3008 has 4 doors and its price is: 12000.0$.] --->
[Car with serial number: 3009 has 4 doors and its price is: 10000.0$.] --->
[Car with serial number: 3010 has 3 doors and its price is: 37000.0$.] --->
[Car with serial number: 3011 has 5 doors and its price is: 43000.0$.] --->
X
Thanks for using our Linked List. Goodbye.
*/
