// ***
// LinkedList6.java By: Aiman Hanna (C) 1993 - 2023
// This program is similar to linkedList1.java, with the exception that
// the Node class is created as an independent class (i.e. not inner class
// to the list. You should notice the consequences in doing so, especially
// to matter such as privacy leak. You should revisit LinkedList5.java and
// consider the design of the classes as shown in this program.
//
// Key Points:
// 1) Designing Node class as an Independent class to the list.
// ***
import java.util.Scanner;
// Node class. Each node has an integer and a link to the next node (or null).
class Node1
{

private int val;

private Node1 next;
// A link to the next node, which is of type Node1

// Default constructors

public Node1()

{

val = 0;

next = null;

}

// Parameterized constructor

public Node1(int i, Node1 xt)

{

val = i;

next = xt;

}

public void setVal(int i)

{

val = i;

}

public void setNext(Node1 xt)

{

next = xt;

}

public int getVal()

{

return val;

}

public Node1 getNext()

{

return next;

}
}
// End of Node1 class
// A linked list class that uses the Node1 class
class IntList
{

private Node1 head;

// Constructor

public IntList()

{

head = null;

}

// A method that adds an node to the start of the list

public void addToStart(int i)

{

Node1 n = new Node1(i, head);

head = n;

n = null;

}

// A method that removes an node form the start of the list

public boolean deleteFromStart()

{

if (head != null)

{

head = head.getNext();

return true;

}

else

return false;

}

// A method to return the size of the list

public int size()

{

int ctr = 0;

Node1 temp = head;
// Point to the start of the list

while(temp!= null)

{

ctr++;

temp = temp.getNext();

}

return ctr;

}

// A method that searches the list for a given value and returns the first
// node that has this value or null if the value is not in the list

public Node1 find(int i)

{

Node1 temp = head;

while(temp != null)

{

if (temp.getVal() == i)

{

return temp;

}

temp = temp.getNext();
// Move temp to the next node

}

// If this point is reached then the value was not found in the list

return null;

}

// A method that indicates whether or not a value is in the list

public boolean contains(int i)

{

if(find(i) != null)

return true;

else

return false;

}

// A method that searches the list for a node with value i1, and, if found,
// the node is modified to have value i2. If there is more than one node
// with value i1, the first node is the one to be modified

public boolean replace(int i1, int i2)

{

Node1 n = find(i1);

if(n == null)

{

System.out.println("Could not find value " + i1 + " in the list;
 no replacement is possible.");

return false;

}

// If you reach this point, the value is in the list

n.setVal(i2);

return true;

}

public void showListContents()

{

Node1 temp = head;

if (temp == null)

System.out.println("There is nothing to display; list is empty.");

else

System.out.println("Here are the contents of the list.");

while(temp != null)

{

System.out.print(temp.getVal() + " ---> ");

temp = temp.getNext();

// Move to the next node

}

System.out.println("X");

}
}
public class LinkedList6{

public static void main(String[] args)

{

Scanner kb = new Scanner(System.in);

int i, i2;

// Create an empty list

IntList lst1 = new IntList();

Node1 t = null;

System.out.println("A list has been created. Its current size is: " +
 lst1.size());

System.out.print("You can add a node to the list by entering a value;
enter -1 to terminate: ");

i = kb.nextInt();

while (i != -1)

{

lst1.addToStart(i);

i = kb.nextInt();

}

if(lst1.size() != 0)

{

System.out.println("\nItems were added to the list. The list current
 size is: " + lst1.size());

lst1.showListContents();

}

System.out.print("\nPlease enter an item to search for; you will then
 be prompted to replace it if found: ");

i = kb.nextInt();

t = lst1.find(i);

if (t != null)

{

System.out.println("\nItem " + i + " was found in the list. ");

System.out.print("Do you wish to replace " + i + " in the list
with another value; " +
"if so enter the new value, or -1 to continue: ");

i2 = kb.nextInt();

if(i2 != -1)

{

lst1.replace(i, i2);

System.out.println("\nContent of node with value " + i +
 " was replaced by " + i2 + ".");

t = null;
// Avoid privacy leak; set t away from the list

lst1.showListContents();

}

else

System.out.println("\nNo replacement was made.");

}

else

System.out.println("\nSorry. Item " + i + " was not found in
 the list. ");

}
}
/* The Output
A list has been created. Its current size is: 0
You can add a node to the list by entering a value; enter -1 to terminate: 12 33 78 4 88 15 65 43 12 90 58 78 52 -1
Items were added to the list. The list current size is: 13
Here are the contents of the list.
52 ---> 78 ---> 58 ---> 90 ---> 12 ---> 43 ---> 65 ---> 15 ---> 88 ---> 4 ---> 78 ---> 33 ---> 12 ---> X
Please enter an item to search for; you will then be prompted to replace it if found: 78
Item 78 was found in the list.
Do you wish to replace 78 in the list with another value; if so enter the new value, or -1 to continue: 92
Content of node with value 78 was replaced by 92.
Here are the contents of the list.
52 ---> 92 ---> 58 ---> 90 ---> 12 ---> 43 ---> 65 ---> 15 ---> 88 ---> 4 ---> 78 ---> 33 ---> 12 ---> X
*/
/* Run Again
A list has been created. Its current size is: 0
You can add a node to the list by entering a value; enter -1 to terminate: 12 15 17 34 78 12 43 9 34 6 -1
Items were added to the list. The list current size is: 10
Here are the contents of the list.
6 ---> 34 ---> 9 ---> 43 ---> 12 ---> 78 ---> 34 ---> 17 ---> 15 ---> 12 ---> X
Please enter an item to search for; you will then be prompted to replace it if found: 94
Sorry. Item 94 was not found in the list.
*/
