// ***
// LinkedList4.java By: Aiman Hanna (C) 1993 - 2023
// This program fixes the problem introduced in LinkedList3.java.
// In particular, the program corrects the problem of shallow copy
// of the list.
//
// Key Points:
// 1) Linked Lists - Copy Constructor and clone() methods.
// 2) Nodes of objects
// 3) Shallow copy vs. deep copy
// ***
class Car{

// Attributes

private int numOfDoors;

private double price;

private long serialNum;

private static long serialNumCtr = 3000;

// Constructors

public Car()
// default constructor

{

numOfDoors = 4;

price = 10000;

serialNum = serialNumCtr++;

}

public Car(int nd, double pr)

{

numOfDoors = nd;

price = pr;

serialNum = serialNumCtr++;

}

public Car(Car c)

{

setNumOfDoors(c.numOfDoors);

setPrice(c.price);

serialNum = serialNumCtr++;

}

public int getNumOfDoors()

{

return numOfDoors;

}

public void setNumOfDoors(int nd)

{

numOfDoors = nd;

}

public double getPrice()

{

return price;

}

public long getserialNumber()

{

return serialNum;

}

public void setPrice(double pr)

{

price = pr;

}

public String toString()

{
return ("Car with serial number: " + serialNum + " has " + numOfDoors + "
 doors and its price is: " + price + "$.");

}

public Car clone()

{

return new Car(this);

}
} // end of Car class
class CarList
{

private class Node

{

private Car cr;

private Node next;
// A link to the next node, which is of type Node1

// Default constructors

public Node()

{

cr = null;

next = null;

}

// Parameterized constructor

public Node(Car c, Node xt)

{

cr = c;
// Notice the "=" here. Is there any privacy leak?
// Why not use cr = c.clone();

next = xt;
// Will that insert the right object in the node?
// Will more Cars be created in such case?

}

// A copy constructor

public Node(Node cn)

{

cr = cn.cr.clone();
// Deep copy the Car contents of the node

next = cn.next;

// Is that okay? Would next = null;

// conform to a copy constructor operation?

}

} // end of inner class Node

private Node head;

public CarList()

{

head = null;

}

// copy constructor

public CarList(CarList lst)

{

if(lst.head == null)

head = null;

else

{

head = null;

Node t1, t2, t3;
// create 3 temporary pointers

t1 = lst.head;

t2 = t3 = null;

while(t1 != null)

{

if (head == null)
// this happens only once

{

t2 = new Node(t1.cr.clone(), null);

head = t2;
// Can we use t2 = new Node(t1); for
 Instance as an alternative?

}

else

{

t3 = new Node(t1.cr.clone(), null);

t2.next = t3;

t2 = t3;

}

t1 = t1.next;

}

t2 = t3 = null;
// t1 is already null by now

}

}

public CarList clone()

{

return new CarList(this);

}

// A method that adds an node to the start of the list

public void addToStart(Car c)

{

Node n = new Node(c, head);

head = n;

n = null;

}

public Node find(long sn)

{

Node t = head;

while(t != null)

{

if (t.cr.getserialNumber() == sn)

return t;

// Is that dangerous ??????

t = t.next;

}

return null;

// value was not found in the list

}

// A method to return the size of the list

public int size()

{

int ctr = 0;

Node temp = head;
// Point to the start of the list

while(temp!= null)

{

ctr++;

temp = temp.next;

}

return ctr;

}

// A method that indicates whether or not a value is in the list

public boolean contains(long sn)

{

if(find(sn) != null)

return true;

else

return false;

}

public void showListContents()

{

Node temp = head;

if (temp == null)

System.out.println("\nThere is nothing to display; list is
 empty.");

else

System.out.println("\nHere are the contents of the list.");

while(temp != null)

{

System.out.println(temp.cr + " ---> ");

temp = temp.next;

}

System.out.println("X");

}
}
public class LinkedList4 {

public static void main(String[] args) {

Car c1 = new Car(4, 12000), c2 = new Car(5, 43000), c3 = new Car(),

 c4 = new Car(2, 19000), c5 = new Car(3, 37000), c6 = new Car(2, 52000);

long sn;

// Create two lists

CarList crlst1 = new CarList(), crlst2 = null;

System.out.println("A list has been created. Its current size is: " +
 crlst1.size());

System.out.println("Will add few cars to the list.");

crlst1.addToStart(c2);

crlst1.addToStart(c5);

crlst1.addToStart(c3);

crlst1.addToStart(c1);

crlst1.addToStart(c4);

crlst1.addToStart(c6);

System.out.println("\nThe list current size is: " + crlst1.size());

crlst1.showListContents();

// Now clone crlst1 to crlst2

crlst2 = crlst1.clone();

System.out.println("\nList has been cloned to another. Here are the
 contents of the cloned list: ");

crlst2.showListContents();

}
}
/* The output of the program
A list has been created. Its current size is: 0
Will add few cars to the list.
The list current size is: 6
Here are the contents of the list.
Car with serial number: 3005 has 2 doors and its price is: 52000.0$. --->
Car with serial number: 3003 has 2 doors and its price is: 19000.0$. --->
Car with serial number: 3000 has 4 doors and its price is: 12000.0$. --->
Car with serial number: 3002 has 4 doors and its price is: 10000.0$. --->
Car with serial number: 3004 has 3 doors and its price is: 37000.0$. --->
Car with serial number: 3001 has 5 doors and its price is: 43000.0$. --->
X
List has been cloned to another. Here are the contents of the cloned list:
Here are the contents of the list.
Car with serial number: 3006 has 2 doors and its price is: 52000.0$. --->
Car with serial number: 3007 has 2 doors and its price is: 19000.0$. --->
Car with serial number: 3008 has 4 doors and its price is: 12000.0$. --->
Car with serial number: 3009 has 4 doors and its price is: 10000.0$. --->
Car with serial number: 3010 has 3 doors and its price is: 37000.0$. --->
Car with serial number: 3011 has 5 doors and its price is: 43000.0$. --->
X
*/
