
COMP 249:
Object Oriented
Programming II
Tutorial 9: Interfaces & Inner Classes

An abstract class has one or more abstract methods (declared without
a body), and may not be instantiated:

Abstract Classes

abstract public class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

abstract public void talk(); // no definition
}

/** In main() */
Person p = new Person("John", 23); // illegal!

At some point, once a new class has
inherited the abstract class and fully
implements all of its abstract
methods, it (the child class) can be
instantiated.

Abstract Classes

abstract public class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

abstract public void talk(); // no definition
}

public class WeirdPerson extends Person {

public WeirdPerson(String name, int age) {
super(name, age);

}

/** A definition was added, so WeirdPerson is not an
abstract class, and can be instantiated! */
public void talk()
{

System.out.println(“I think I know how to code well”);
}

}

/** In main() */

/** Still illegal */
Person p = new Person(“Alex”, 65);

/** Works, because the instance is of WeirdPerson.
The LHS merely tells us which methods we have at
our disposal */
Person p = new WeirdPerson(“Alex”, 65);

An interface in Java is a type bound by the following constraints:

• It may not be instantiated
• It must be declared public
• It may only have public members (attributes and methods)
• Attributes are static and final
• It may only extend another interface

Some key points to keep in mind when implementing an interface:

• A class may implement any number of interfaces
• That class must implement all the methods declared in those interfaces
• There is a conflict if two interfaces declare methods with the same

signature but different return types.
• This is similar to overriding where the return type is different. It will not

work.

Interfaces

An example of a conflict when implementing two interfaces:

Interfaces

public interface SomeInterface {
/** having void return type*/
public void doSomething(int a, int b);

}

public interface AnotherInterface {
/** having int return type */
public int doSomething(int a, int b);

}

/** implementing both are not allowed */
public class ImplementationClass implements SomeInterface, AnotherInterface
{

}

An interface can have three
types of methods:

1) Abstract

2) Default

3) Static

Interfaces
public interface Methods {

/** An abstract method – no code in its body. It must be
implemented in the class that implements this interface
*/
void function1();

/** A default method – code fully defined. The class that
implements this interface may decide to override it with
its own implementation */
default void function2()
{

System.out.println(“Inside function 2”);
}

/** A static method – code fully defined. The method
cannot be static AND abstract because we must be able to
call the method statically like Methods.function3(), so a
static method in an interface must have a definition */
static void function3()
{

System.out.println(“inside function 3”);
}

}

If a developer needs to add a
method to an interface after it is
already in use…:

1) Create a new interface
2) Extend the old one in the new

one
3) Add the new method(s) to the

new interface
4) Leave it up to your clients to

decide if they want to use this
new interface.
1) Why? One or more of the

client’s classes uses the
older interface. If a new
method is put in it, those
classes won’t be able to
compile until a definition is
written for this newly
added interface method.

Interfaces
/** You write an interface for a Client and send it to them. The Client
implements this interface in one of their classes */
public interface OldInterface {

void function1();
}

/** A month later, you want to add a new function (function2) to this
interface. You do so, and send it to the Client. Their class no longer
compiles because they need to implement function2() in the class first.
You are preventing their code from running in this way… Don’t do it this
way */
public interface OldInterface {

void function1();
void function2();

}

/** You fix the problem by creating a new interface that extends the old,
and add the method there. Since the Client never used this NewInterface,
their code will continue to compile and run. They can implement this
interface when they are ready. */
public interface NewInterface extends OldInterface {

void function2();
}

✔

An inner class is defined inside the body of another class.

• It may be private (only the outer class may use it) or public
• It may be declared static
• Both inner and outer classes may access each other’s private members
• If the outer class is extended, the inner class can be accessed by

the derived class

Creating an instance of an inner class (outside of the outer class):

Inner Classes

/** If the inner class is not static, an object of the outer class must be created: */
OuterClass outer = new OuterClass();

/** note the position of new */
InnerClass inner = outer.new InnerClass;

/** If the inner class is static, the process is more intuitive */
OuterClass.InnerClass inner = new OuterClass.InnerClass();

You are writing a video game engine, and notice common features
between different objects that the player can operate. You decide to
create a class hierarchy to represent these similarities.

The Plane and Driveable classes both implement a Navigable
interface, and make use of the startEngine() and stopEngine()
methods. The main program loop can invoke them in a seamless way
(have them print out simple information about the navigable).

In addition, your system must adhere to the following constraints:

• The Plane class must have a capacity attribute;

• The Driveable class must have the attributes machineID, and make;

• Classes Car and Motorcycle both extend the Driveable class, and
have fuelType and helmetRequired attributes, respectively.

Coding Exercise 1

Below is a simplified UML class diagram for the system:

Coding Exercise 1

Navigable

Driveable Plane

Car Motorcycle

implements implements

Ensure that your program works with the following main() method:

Coding Exercise 1

public static void main(String[] args) {
// create an array of Navigables
Navigable navigables[] = new Navigable[5];

// populate the array with some objects
navigables[0] = new Plane(300);
navigables[1] = new Plane(150);
navigables[2] = new Car(4000, "Lexus", "Hybrid");
navigables[3] = new Car(4100, "Tesla", "Electric");
navigables[4] = new Motorcycle(5000, "Ducati", true);

// output Navigable information
for (Navigable nav : navigables) {

nav.startEngine();
nav.stopEngine();

}

}

Your output should be similar to:

Coding Exercise 1

Plane with 300 capacity has taken off
Plane with 300 capacity has landed
Plane with 150 capacity has taken off
Plane with 150 capacity has landed
Lexus has started its engine
Lexus has stopped its engine
Tesla has started its engine
Tesla has stopped its engine
Ducati has started its engine
Ducati has stopped its engine

Below is a class named InventoryItem. Each instance of the class has a
name and a unique ID:

public class InventoryItem {
private String name;
private int itemID;

}

• Complete the class with appropriate constructors, accessors, and
mutators.

• The itemID is assigned by the store, and can be set from outside the
InventoryItem class. Your code does not have to ensure that they
are unique.

• Your class should implement the Comparable interface.

• The compareTo() method should compare itemID attributes.

Coding Exercise 2

Test your class using the following Driver class, which creates an array of
arbitrary InventoryItem objects. Complete the sort() method, which takes
as input an array of Comparable objects.

Coding Exercise 2

public class Driver {
public static void sort(Comparable[] objects) {

// place your code here
}

public static void main(String[] args) {
InventoryItem[] inventoryItems = new InventoryItem[5];
inventoryItems[0] = new InventoryItem("Book", 18);
inventoryItems[1] = new InventoryItem("Computer", 77);
inventoryItems[2] = new InventoryItem("Printer", 4);
inventoryItems[3] = new InventoryItem("Desk", 12);
inventoryItems[4] = new InventoryItem("Chair", 9);

sort (inventoryItems);
for (int i = 0; i < inventoryItems.length; ++i)

System.out.println(inventoryItems[i]);
}

}

