
COMP 249:
Object Oriented
Programming II
Tutorial 11:

Generics

What are generics and why use them?

Generics enable types (Classes and interfaces) to be
parameters when defining classes, interfaces and
methods. Some advantages of using generics:

► Type Safety: Generics enable you to write code that is
type-safe. This means that the compiler can catch type-
related errors at compile time, rather than allowing
them to manifest at runtime.

► Code Reusability: Generics allow you to write functions,
classes, or data structures that can work with different
data types without having to duplicate code for each
type.

What are generics and why use them?

► Abstraction: Generics provide a level of abstraction by
allowing you to create generic algorithms or data
structures.

► Performance: Generics can be more efficient than
alternatives like using object types, as they can avoid
the need for boxing and unboxing (converting between
value and reference types) and allow for better
compiler optimization.

A not generic Box class

Consider the following Box class which is not generic:

public class Box {

private Object object;

Box(Object object) {this.object = object;}

public void set(Object object) { this.object = object; }

public Object get() { return object; }

}

/** In main(…) */

ArrayList<Box> li = new ArrayList<Box>();

li.add(new Box(new Object()));

li.add(new Box(new String()));

li.add(new Box(new Integer(24)));

Collections.shuffle(li);

Box b = li.get(0);

/** At this point, we don’t know what the runtime
type of b.get() is. It could be a String, an Integer,
or an Object. If we cast to the incorrect class, we
will get a runtime error */

Object o = b.get();

/** If b.get() is a:
- Object in memory, both casts would fail (though
the first will cause the crash)
- String in memory, the first cast will pass, the
second would fail
- Integer in memory, the first cast will fail, the
second would pass (but the first will crash the
program).
*/

String s = (String) o;

Integer I = (Integer) o;

The methods store and return an Object. Although we know the
object types when we store them in Box, it becomes harder to
keep track of their runtime-types later, especially if they are
added to a list and later re-organized…

Whenever we “get” a Box from the list, and then “get” the object it
holds, we would have to check its instance type before casting.
This adds a lot of execution and painful programming overhead. If
many different types of objects are stored in the different Box
instances in the list, this becomes even worse.

Example of Generics
As an example, consider following code for finding the maximal element in the
range [begin, end) of a list.

Question 1: A simple generic class
Write the same Box class as a generic. Your generic class should:
► Store a value of type T as a private variable.
► Implement accessor and mutator methods for that variable.
► Implement a toString() method describing the box and its content.
You should be able to use this class like this:

Box<Integer> myIntegerBox = new Box<Integer>();
myIntegerBox.set(new Integer(10));
System.out.println(myIntegerBox);

Box<String> myStringBox = new Box<String>();
myStringBox.set(new String("For sale, baby shoes, never worn"));
System.out.println(myStringBox);

Question 2: Multiple Types

A generic class can also take multiple type parameters. Let's build an
OrderedPair generic class. Our generic class should:

► Store values of type parameters T and S in private variables.

► Implement the accessor and mutator for each value.

► Implement the toString() method describing the pair and their
values.

You should be able to use this class like this:

OrderedPair<Integer,String> myPair = new OrderedPair<Integer,String>();
myPair.setFirst(new Integer(1));
myPair.setSecond(new String("So much depends on a red wheelbarrow"));
System.out.println(myPair);

Question 3: Bounded Type Parameters
At times, you might want to limit the types that can be used by a generic
class. This can be accomplished with bounded type parameters using the
extends word in the type definition. Let's create a NumberBox class that limits
what our Box can contain to a Number class object.
We should be able to use the first part of the following code, but generate an
error on the second:

// This works:
NumberBox<Integer> myIntegerBox = new NumberBox<Integer>();
myIntegerBox.set(new Integer(10));
System.out.println(myIntegerBox);
// This will result in a compile time error:
NumberBox<String> myStringBox = new NumberBox<String>();
myStringBox.set(new String("I am not a Number!"));
System.out.println(myStringBox);

Bounded Type Parameters with Multiple Bounds

Bounded type parameters can also have multiple bounds. For
example, you could ensure that your type is an instance-of a certain
class and has access to certain interfaces:

That way, you are ensuring that the variables and methods provided
by Shape, Interface1 and Interface2 will be available to your
GenericClass.

public class GenericClass<T extends Shape & Interface1 & Interface2>
{

// ...

}

Question 4: Bounded Type Parameters
with Multiple Bounds

Consider the following Shape class:

First, write a Rectangle class which extends Shape and implements
ShapeInterface. The printShape method should return a String of height
by width characters.

abstract class Shape {
private int height,width;

public Shape() { this.height = 0; this.width = 0; }
public Shape(int h, int w) { this.height = h; this.width = w; }

public void setHeigth(int i) { this.height = i; }
public void setWidth(int i) { this.width = i; }

public int getHeigth() { return this.height; }
public int getWidth() { return this.width; }

}

public interface ShapeInterface {
String printShape();

}

Question 4: Bounded Type Parameters
with Multiple Bounds

Next, create a new generic class which:
► Bounds its accepted type parameter to the Shape class and the

ShapeInterface interface.

► Works just like our generic Box class (holds a single instance of
its generic-type object), with accessors and mutators.

► Returns the String generated by printShape() in the toString()
method.

References

► The Java Tutorial on Generics

docs.oracle.com/javase/tutorial/java/generics/index.html

► Another Tutorial on the same subject, using different examples

docs.oracle.com/javase/tutorial/extra/generics/index.htm
l

