// ***
// Abstract1.java By: Aiman Hanna (C) 1993 - 2023
// This program introduces abstract classes and abstract methods.
// Sometimes, it is does NOT make sense to create objects from
// specific classes. In such case, these classes should be created
// as abstract. An abstract class can only be used to derive other
// classes. An abstract class must have at least one abstract method.
// Abstract methods must have an empty body; that is, they cannot
// have any implementations. A derived class that is not abstract
// is referred to as concrete class. Derived concrete classes must
// define ALL the abstract methods of their base class.
//
// NOTE: Although an object of an abstract class cannot be created,
// it is perfectly fine to have a parameter of an abstract class type.
// This makes it possible to plug in an object of any of its descendant
// classes.
//
// Key Points:
// 1) Abstract classes.
// 2) Abstract methods.
// ***
// Vehicle Class
abstract class Vehicle {

// Attributes

protected int numOfDoors;

protected double price;

private long serialNum;

private static long serialNumCtr = 1000;

// Constructors

public Vehicle()
// default constructor

{

System.out.println("\nCreating a vehicle object using default constructor");

numOfDoors = 4;

price = 10000;

serialNum = serialNumCtr++;

}

public Vehicle(int nd, double pr)

{

System.out.println("\nCreating a vehicle object using parameterized constructor");

numOfDoors = nd;

price = pr;

serialNum = serialNumCtr++;

}

public Vehicle(Vehicle vec)
// copy constructor

{

System.out.println("\nCreating a vehicle object using copy constructor");

numOfDoors = vec.numOfDoors;

price = vec.price;

serialNum = serialNumCtr++;

// Never duplicate a serial number

}

public int getNumOfDoors()

{

return numOfDoors;

}

public void setNumOfDoors(int nd)

{

numOfDoors = nd;

}

public double getPrice()

{

return price;

}

public void setPrice(double pr)

{

price = pr;

}

// Find out if that vehicle has a cheaper price than the passed vehicle

public boolean isCheaper(Vehicle v)

{

// Obtain the class names just for display purposes

String s1 = this.getClass().toString(), s2 = v.getClass().toString();

s1 = s1.substring(6); // Remove the word "class" to get only the class name

s2 = s2.substring(6);

if(getPrice() < v.getPrice())

{

System.out.println("The price of this " + s1 +

" object is cheaper than the price of the passed " +

s2 + " object.");

return true;

}

else

{

System.out.println("The price of this " + s1 +

" object is NOT cheaper than the price of the passed " +

s2 + " object.");

return false;

}

}

// Some abstract methods that MUST be defined by derived classes

abstract public String toString();

// abstract can also be specified as follows

public abstract long getSerNumber();

abstract public Vehicle clone();
} // end of Vehicle class
// Bus Class - This is a derived class from the Vehicle Class; that is it
// inherits the Vehicle class
class Bus extends Vehicle{

// Attributes

private int passengerCapacity;

private long serialNum;

private static long serialNumCtr = 2000;

// Constructors

public Bus()
// default constructor

{

System.out.println("Creating a bus object using default constructor");

passengerCapacity = 10;

serialNum = serialNumCtr++;

}

public Bus(int pc)

{

System.out.println("Creating a bus object using parameterized constructor");

passengerCapacity = pc;

serialNum = serialNumCtr++;

}

public Bus(Bus b)

{

System.out.println("Creating a bus object using copy constructor");

setNumOfDoors(b.getNumOfDoors());

setPrice(b.getPrice());

passengerCapacity = b.passengerCapacity;

serialNum = serialNumCtr++;

}

// A constructor that would allow the setting of the price and the number of doors

// and the passenger capacity

public Bus(int nd, double pr, int pc)

{

this(pc);
// Call the constructor that sets the passenger capacity

System.out.println("Creating a bus object using parameterized constructor for full settings....\n");

// Notice that we now cannot call super to set the other two attributes

// (i.e. super(nd, pr);) since either "this" or 'super" must be the first

// statement, and it is not possible to have both of them as such!

setPrice(pr);

setNumOfDoors(nd);

// serialNum is assigned in the call to the "this" constructor

}

public int getPassangerCapacity()

{

return passengerCapacity;

}

public void setPassengerCapacity(int pc)

{

passengerCapacity = pc;;

}

public String toString()

{

return "This Bus has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The passenger capacity of this bus is " + passengerCapacity + ".";

}

// Override the setPrice() method

public void setPrice(double pr)

{

if(pr < getPrice())

System.out.println("The price of this bus will be reduced from " + getPrice() + "$ to " + pr + "$.");

else if (pr > getPrice())

System.out.println("The price of this bus will be increased from " + getPrice() + "$ to " + pr + "$.");

else

System.out.println("No change will be applied to this price of the bus.");

super.setPrice(pr);

// Notice that you cannot access "price" directly since it is private to the base class

// i.e. price = pr; would be illegal

}

public double getPrice()

{

return price;

}

public long getSerNumber()

{

return serialNum;

}

public Bus clone()

{

return new Bus(this);
// Create and return a new Bus using the copy constructor

}
} // end of Bus class
//Car Class - This is a derived class from the Vehicle Class.
//For a Car object, we are interested in its number of seats
class Car extends Vehicle{

// Attributes

private int numOfSeats;

private long serialNum;

private static long serialNumCtr = 3000;

// Constructors

public Car()
// default constructor

{

System.out.println("Creating a car object using default constructor");

numOfSeats = 5;

serialNum = serialNumCtr++;

}

public Car(int nd, double pr, int ns)

{

super(nd, pr);

System.out.println("Creating a car object using parameterized constructor");

numOfSeats = ns;

serialNum = serialNumCtr++;

}

public Car(Car c)

{

System.out.println("Creating a car object using copy constructor");

setNumOfDoors(c.getNumOfDoors());

setPrice(c.getPrice());

numOfSeats = c.numOfSeats;

serialNum = serialNumCtr++;

}

public int getNumOfSeats()

{

return numOfSeats;

}

public void setNumOfSeats(int ns)

{

numOfSeats = ns;;

}

public String toString()

{

return "This Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this car is " + numOfSeats + ".";

}

public double getPrice()

{

return price;

}

public long getSerNumber()

{

return serialNum;

}

public Car clone()

{

return new Car(this);
// Create and return a new Car using the copy constructor

}
} // end of Car class
//SportCar Class - This is a derived class from the Car Class
//For a SportCar object, we are interested in its gas consumption
// as gallon per 100 miles
class SportCar extends Car{

// Attributes

private double gasConsumption;

private long serialNum;

private static long serialNumCtr = 4000;

// Constructors

public SportCar()
// default constructor

{

System.out.println("Creating a sport car object using default constructor");

gasConsumption = 4;

serialNum = serialNumCtr++;

}

public SportCar(int nd, double pr, int ns, double gc)

{

super(nd, pr, ns);

System.out.println("Creating a sport car object using parameterized constructor");

gasConsumption = gc;

serialNum = serialNumCtr++;

}

public SportCar(SportCar sc)

{

System.out.println("Creating a sport car object using copy constructor");

setNumOfDoors(sc.getNumOfDoors());

setPrice(sc.getPrice());

setNumOfSeats(sc.getNumOfSeats());

gasConsumption = sc.gasConsumption;

serialNum = serialNumCtr++;

}

public double getGasConsumption()

{

return gasConsumption;

}

public void setGasConsumption(double gc)

{

gasConsumption = gc;;

}

public String toString()

{

return "This Sport Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this Sport Car is " + getNumOfSeats() +

"\nand its gas consumption is " + gasConsumption + " gallons/100-mile.";

}

public double getPrice()

{

return price;

}

public long getSerNumber()

{

return serialNum;

}

public SportCar clone()

{

return new SportCar(this);
// Create and return a new SportCar using the copy constructor

}
} // end of Sport Car class
//RaceCar Class - This is a derived class from the SportCar Class
//For a RaceCar object, we are interested in its horse power
class RaceCar extends SportCar{

// Attributes

private int horsePower;

private long serialNum;

private static long serialNumCtr = 5000;

// Constructors

public RaceCar()
// default constructor

{

System.out.println("Creating a race car object using default constructor");

horsePower = 400;

serialNum = serialNumCtr++;

}

public RaceCar(int nd, double pr, int ns, double gc, int hp)

{

super(nd, pr, ns, gc);

System.out.println("Creating a race car object using parameterized constructor");

horsePower = hp;

serialNum = serialNumCtr++;

}

public RaceCar(RaceCar rc)

{

System.out.println("Creating a race car object using copy constructor");

setNumOfDoors(rc.getNumOfDoors());

setPrice(rc.getPrice());

setNumOfSeats(rc.getNumOfSeats());

setGasConsumption(rc.getGasConsumption());

horsePower = rc.horsePower;

serialNum = serialNumCtr++;

}

public int getHorsePower()

{

return horsePower;

}

public void setHorsePower(int hp)

{

horsePower = hp;

}

public String toString()

{

return "This Race Car has " + getNumOfDoors() + " doors and its price is: " + getPrice() +

"$. The number of seats of this Race Car is " + getNumOfSeats() +

"\nand its gas consumption is " + getGasConsumption() + " gallons/100-mile." +

"The horse power of this Race Car is: " + horsePower + ".";

}

public double getPrice()

{

return price;

}

public long getSerNumber()

{

return serialNum;

}

public RaceCar clone()

{

return new RaceCar(this);
// Create and return a new RaceCar using the copy constructor

}
} // end of Race Car class
public class Abstract1{

// A method that would accept any vehicle object and displays its information

public static void showVehicleInfo(Vehicle v)

{

System.out.println("Here is the information of this vehicle");

System.out.println(v);

System.out.println();

}

// A method that takes an array of Vehicles inventory and return a copy of that array

public static Vehicle[] copyInventory_3(Vehicle[] va)

{

// This is the correct version of this method, which uses the clone() method instead of

// the copy constructors

Vehicle[] vecarr = new Vehicle[va.length];
// create a new array with the same length

// as the passed array;

for (int i = 0; i < vecarr.length; i++)

// then copy it

{

vecarr[i] = va[i].clone();

}

return vecarr;

}

// A method that displays the contents of an inventory

public static void displayInventoryInfo(Vehicle[] va)

{

String s;

System.out.println("\nHere is the information of vehicles in that inventory");

for (int i = 0; i < va.length; i++)

{

// Obtain the class name just for display purposes

s = va[i].getClass().toString();

s = s.substring(6); // Remove the word "class" to get only the class name

System.out.print((i+1) + ". " + s + " with serial number " + va[i].getSerNumber() + ". ");

System.out.println(va[i]);

}

}

public static void main(String[] args) {

System.out.println("Will create three Vehicle objects");

// The following would be illegal now since you can NOT create objects

// from an abstract class

// Vehicle v1 = new Vehicle(), v2 = new Vehicle(4, 5000), v3 = new Vehicle(v2);

System.out.println();

System.out.println("Will create three Bus objects");

Bus b1 = new Bus(2, 55000, 37), b2 = new Bus(3, 62000, 55), b3 = new Bus(b1);

System.out.println();

System.out.println("Will create two Car objects");

Car c1 = new Car(4, 12000, 5), c2 = new Car(2, 26000, 2);

System.out.println();

System.out.println("Will create three Sport Car objects");

SportCar sc1 = new SportCar(4, 12000, 5, 3), sc2 = new SportCar(3, 18500, 4, 4),

 sc3 = new SportCar(2, 15000, 5, 4);

System.out.println();

System.out.println("Will create two Race Car objects");

RaceCar rc1 = new RaceCar(4, 67000, 2, 4, 400), rc2 = new RaceCar(3, 85000, 4, 4, 450);

System.out.println("\nWill create some inventories");

System.out.println("============================\n");

Vehicle[] vecInv1 = new Vehicle[6];

vecInv1[0] = c1;

vecInv1[1] = b1;

vecInv1[2] = b2;

vecInv1[3] = sc1;

vecInv1[4] = sc2;

vecInv1[5] = rc1;

System.out.print("\nInventory vecInv1: ");

displayInventoryInfo(vecInv1);

Vehicle[] vecInv2 = new Vehicle[4];

vecInv2[0] = c2;

vecInv2[1] = sc3;

vecInv2[2] = rc2;

vecInv2[3] = b3;

System.out.print("\nInventory vecInv2: ");

displayInventoryInfo(vecInv2);

// Now copy these inventories using the correct copyInventory method

Vehicle[] vecInv3 = copyInventory_3(vecInv1);

Vehicle[] vecInv4 = copyInventory_3(vecInv2);

System.out.print("\nInventory vecInv3 (should be a COPY of vecInv1): ");

displayInventoryInfo(vecInv3);

System.out.print("\nInventory vecInv4 (should be a COPY of vecInv2): ");

displayInventoryInfo(vecInv4);

}
}
/* The Output
Will create three Vehicle objects
Will create three Bus objects
Creating a vehicle object using default constructor
Creating a bus object using parameterized constructor
Creating a bus object using parameterized constructor for full settings....
The price of this bus will be increased from 10000.0$ to 55000.0$.
Creating a vehicle object using default constructor
Creating a bus object using parameterized constructor
Creating a bus object using parameterized constructor for full settings....
The price of this bus will be increased from 10000.0$ to 62000.0$.
Creating a vehicle object using default constructor
Creating a bus object using copy constructor
The price of this bus will be increased from 10000.0$ to 55000.0$.
Will create two Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Will create three Sport Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Will create two Race Car objects
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a race car object using parameterized constructor
Creating a vehicle object using parameterized constructor
Creating a car object using parameterized constructor
Creating a sport car object using parameterized constructor
Creating a race car object using parameterized constructor
Will create some inventories
============================
Inventory vecInv1:
Here is the information of vehicles in that inventory
1. Car with serial number 3000. This Car has 4 doors and its price is: 12000.0$. The number of seats of this car is 5.
2. Bus with serial number 2000. This Bus has 2 doors and its price is: 55000.0$. The passenger capacity of this bus is 37.
3. Bus with serial number 2001. This Bus has 3 doors and its price is: 62000.0$. The passenger capacity of this bus is 55.
4. SportCar with serial number 4000. This Sport Car has 4 doors and its price is: 12000.0$. The number of seats of this Sport Car is 5
and its gas consumption is 3.0 gallons/100-mile.
5. SportCar with serial number 4001. This Sport Car has 3 doors and its price is: 18500.0$. The number of seats of this Sport Car is 4
and its gas consumption is 4.0 gallons/100-mile.
6. RaceCar with serial number 5000. This Race Car has 4 doors and its price is: 67000.0$. The number of seats of this Race Car is 2
and its gas consumption is 4.0 gallons/100-mile.The horse power of this Race Car is: 400.
Inventory vecInv2:
Here is the information of vehicles in that inventory
1. Car with serial number 3001. This Car has 2 doors and its price is: 26000.0$. The number of seats of this car is 2.
2. SportCar with serial number 4002. This Sport Car has 2 doors and its price is: 15000.0$. The number of seats of this Sport Car is 5
and its gas consumption is 4.0 gallons/100-mile.
3. RaceCar with serial number 5001. This Race Car has 3 doors and its price is: 85000.0$. The number of seats of this Race Car is 4
and its gas consumption is 4.0 gallons/100-mile.The horse power of this Race Car is: 450.
4. Bus with serial number 2002. This Bus has 2 doors and its price is: 55000.0$. The passenger capacity of this bus is 37.
Creating a vehicle object using default constructor
Creating a car object using copy constructor
Creating a vehicle object using default constructor
Creating a bus object using copy constructor
The price of this bus will be increased from 10000.0$ to 55000.0$.
Creating a vehicle object using default constructor
Creating a bus object using copy constructor
The price of this bus will be increased from 10000.0$ to 62000.0$.
Creating a vehicle object using default constructor
Creating a car object using default constructor
Creating a sport car object using copy constructor
Creating a vehicle object using default constructor
Creating a car object using default constructor
Creating a sport car object using copy constructor
Creating a vehicle object using default constructor
Creating a car object using default constructor
Creating a sport car object using default constructor
Creating a race car object using copy constructor
Creating a vehicle object using default constructor
Creating a car object using copy constructor
Creating a vehicle object using default constructor
Creating a car object using default constructor
Creating a sport car object using copy constructor
Creating a vehicle object using default constructor
Creating a car object using default constructor
Creating a sport car object using default constructor
Creating a race car object using copy constructor
Creating a vehicle object using default constructor
Creating a bus object using copy constructor
The price of this bus will be increased from 10000.0$ to 55000.0$.
Inventory vecInv3 (should be a COPY of vecInv1):
Here is the information of vehicles in that inventory
1. Car with serial number 3007. This Car has 4 doors and its price is: 12000.0$. The number of seats of this car is 5.
2. Bus with serial number 2003. This Bus has 2 doors and its price is: 55000.0$. The passenger capacity of this bus is 37.
3. Bus with serial number 2004. This Bus has 3 doors and its price is: 62000.0$. The passenger capacity of this bus is 55.
4. SportCar with serial number 4005. This Sport Car has 4 doors and its price is: 12000.0$. The number of seats of this Sport Car is 5
and its gas consumption is 3.0 gallons/100-mile.
5. SportCar with serial number 4006. This Sport Car has 3 doors and its price is: 18500.0$. The number of seats of this Sport Car is 4
and its gas consumption is 4.0 gallons/100-mile.
6. RaceCar with serial number 5002. This Race Car has 4 doors and its price is: 67000.0$. The number of seats of this Race Car is 2
and its gas consumption is 4.0 gallons/100-mile.The horse power of this Race Car is: 400.
Inventory vecInv4 (should be a COPY of vecInv2):
Here is the information of vehicles in that inventory
1. Car with serial number 3011. This Car has 2 doors and its price is: 26000.0$. The number of seats of this car is 2.
2. SportCar with serial number 4008. This Sport Car has 2 doors and its price is: 15000.0$. The number of seats of this Sport Car is 5
and its gas consumption is 4.0 gallons/100-mile.
3. RaceCar with serial number 5003. This Race Car has 3 doors and its price is: 85000.0$. The number of seats of this Race Car is 4
and its gas consumption is 4.0 gallons/100-mile.The horse power of this Race Car is: 450.
4. Bus with serial number 2005. This Bus has 2 doors and its price is: 55000.0$. The passenger capacity of this bus is 37.
*/
