
Comp 248

Introduction to Programming

Chapter 4 & 5 Defining Classes
Part C

Dr. Aiman Hanna

Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2007-2016 Aiman Hanna

All rights reserved

Wrapper Classes

 Wrapper classes provide a class type corresponding to
each of the primitive types

 This makes it possible to have class types that behave

somewhat like primitive types

 The wrapper classes for the primitive types byte, short,
long, float, double, and char are (in order) Byte,
Short, Long, Float, Double, and Character

 Wrapper classes also contain a number of useful
predefined constants and static methods

5-2

Wrapper Classes

 Boxing: the process of going from a value of a primitive
type to an object of its wrapper class
 To convert a primitive value to an "equivalent" class type

value, create an object of the corresponding wrapper class
using the primitive value as an argument

 The new object will contain an instance variable that stores a
copy of the primitive value

 Unlike most other classes, a wrapper class does not have a
no-argument constructor
Integer integerObject = new Integer(42);

5-3

Wrapper Classes

 Unboxing: the process of going from an object of a
wrapper class to the corresponding value of a
primitive type

 The methods for converting an object from the

wrapper classes Byte, Short, Integer, Long,
Float, Double, and Character to their
corresponding primitive type are (in order)
byteValue, shortValue, intValue,
longValue, floatValue, doubleValue, and
charValue

 None of these methods take an argument
int i = integerObject.intValue();

5-4

Automatic Boxing and Unboxing

 Starting with version 5.0, Java can automatically do boxing and
unboxing

 Instead of creating a wrapper class object using the new
operation (as shown before), it can be done as an automatic type
cast:
Integer integerObject = 42;

 Instead of having to invoke the appropriate method (such as
intValue, doubleValue, charValue, etc.) in order to
convert from an object of a wrapper class to a value of its
associated primitive type, the primitive value can be recovered
automatically
int i = integerObject;

5-5

Constants and Static Methods in Wrapper

Classes

 Wrapper classes include useful constants that provide
the largest and smallest values for any of the primitive
number types
 For example, Integer.MAX_VALUE,
Integer.MIN_VALUE, Double.MAX_VALUE,
Double.MIN_VALUE, etc.

 The Boolean class has names for two constants of
type Boolean
 Boolean.TRUE and Boolean.FALSE are the Boolean

objects that correspond to the values true and false of
the primitive type boolean

5-6

Constants and Static Methods in Wrapper

Classes

 Wrapper classes have static methods that convert a
correctly formed string representation of a number to the
number of a given type
 The methods Integer.parseInt, Long.parseLong,
Float.parseFloat, and Double.parseDouble do this
for the primitive types (in order) int, long, float, and
double

 Wrapper classes also have static methods that convert from
a numeric value to a string representation of the value
 For example, the expression

Double.toString(123.99);

 returns the string value "123.99"

 The Character class contains a number of static
methods that are useful for string processing

5-7

Some Methods in the Class Character (Part

1 of 3)

5-8

Some Methods in the Class Character (Part

2 of 3)

5-9

Some Methods in the Class Character (Part

3 of 3)

5-10

Class Parameters

 All parameters in Java are call-by-value parameters
 A parameter is a local variable that is set equal to the

value of its argument

 Therefore, any change to the value of the parameter
cannot change the value of its argument

 Class type parameters appear to behave differently
from primitive type parameters
 They appear to behave in a way similar to parameters in

languages that have the call-by-reference parameter passing
mechanism

5-11

Class Parameters

 The value plugged into a class type parameter is a
reference (memory address)
 Therefore, the parameter becomes another name for

the argument

 Any change made to the object named by the parameter
(i.e., changes made to the values of its instance
variables) will be made to the object named by the
argument, because they are the same object

 Note that, because it still is a call-by-value parameter,
any change made to the class type parameter itself (i.e.,
its address) will not change its argument (the reference
or memory address)

5-12

Parameters of a Class Type

5-13

The Constant null

 null is a special constant that may be assigned to a variable of
any class type

YourClass yourObject = null;

 It is used to indicate that the variable has no "real value"
 It is often used in constructors to initialize class type instance variables

when there is no obvious object to use

 null is not an object: It is, rather, a kind of "placeholder" for a
reference that does not name any memory location
 Because it is like a memory address, use == or != (instead of equals) to

test if a class variable contains null

if (yourObject == null) . . .

5-14

Pitfall: Null Pointer Exception

 Even though a class variable can be initialized to null, this
does not mean that null is an object

 null is only a placeholder for an object

 A method cannot be invoked using a variable that is initialized to
null

 The calling object that must invoke a method does not exist

 Any attempt to do this will result in a "Null Pointer Exception"
error message
 For example, if the class variable has not been initialized at all (and is not

assigned to null), the results will be the same

5-15

Using and Misusing References

 When writing a program, it is very important to insure
that private instance variables remain truly private

 For a primitive type instance variable, just adding the
private modifier to its declaration should insure that
there will be no privacy leaks

 For a class type instance variable, however, adding the
private modifier alone is not sufficient

5-16

Copy Constructor for a Class with Primitive

Type Instance Variables

public Date(Date aDate)

{

 if (aDate == null) //Not a real date.

 {

 System.out.println("Fatal Error.");

 System.exit(0);

 }

 month = aDate.month;

 day = aDate.day;

 year = aDate.year;

}

5-17

Copy Constructor for a Class with Class Type

Instance Variables

public Person(Person original)

{

 if (original == null)

 {

 System.out.println("Fatal error.");

 System.exit(0);

 }

 name = original.name;

 born = new Date(original.born);

 if (original.died == null)

 died = null;

 else

 died = new Date(original.died);

}

5-18

Copy Constructor for a Class with Class Type

Instance Variables

 Unlike the Date class, the Person class contains
three class type instance variables

 If the born and died class type instance variables for
the new Person object were merely copied, then they
would simply rename the born and died variables
from the original Person object

born = original.born //dangerous

died = original.died //dangerous

 This would not create an independent copy of the original
object

5-19

Pitfall: Privacy Leaks

 The previously illustrated examples from the Person
class show how an incorrect definition of a constructor can
result in a privacy leak

 A similar problem can occur with incorrectly defined
mutator or accessor methods
 For example:

public Date getBirthDate()

{

 return born; //dangerous

}

 Instead of:
public Date getBirthDate()

{

 return new Date(born); //correct

}

5-20

Mutable and Immutable Classes

 The accessor method getName from the Person class
appears to contradict the rules for avoiding privacy leaks:
public String getName()

{

 return name; //Isn't this dangerous?

}

5-21

Mutable and Immutable Classes

 A class that contains no methods (other than
constructors) that change any of the data in an object of
the class is called an immutable class

 Objects of such a class are called immutable objects

 It is perfectly safe to return a reference to an immutable
object because the object cannot be changed in any way

 The String class is an immutable class

5-22

Mutable and Immutable Classes

 A class that contains public mutator methods or other
public methods that can change the data in its objects is
called a mutable class, and its objects are called mutable
objects

 Never write a method that returns a mutable object

 Instead, use a copy constructor to return a reference to a
completely independent copy of the mutable object

5-23

