
Comp 248

Introduction to Programming

Chapter 6 Arrays
Part C

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2007-2016 Aiman Hanna

All rights reserved

Initializer Lists

 An initializer list can be used to instantiate and initialize an
array in one step

 The values are delimited by braces and separated by
commas

 Examples:

 int[] units = {147, 323, 89, 933, 540,

 269, 97, 114, 298, 476};

 char[] letterGrades = {'A', 'B', 'C', 'D',
’F'};

6-2

Array of Characters

 An Array of Characters Is Not a String

char[] a = {'A', 'B', 'C'};

String s = a; //Illegal!

 However, an array of characters can be converted
to an object of type String

6-3

 CharArrays1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/CharArrays1.java
http://aimanhanna.com/concordia/comp248/ArrayOperations8.java
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc

Arrays of Objects

 The base type of an array can be a class type
Car[] carArr = new Car[20];

 VERY IMPOTRANT:

 However, this will NOT create 20 Car objects; since
each of the 20 elements of the array are initialized to
null

 Any attempt to reference any them at this point would result
in a "null pointer exception" error message

6-4

 ObjectArrays1.java (MS-Word file)

 ObjectArrays2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ObjectArrays1.java
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc

Array As Method Parameters

 Both array indexed variables and entire arrays

can be used as arguments to methods

 An indexed variable can be an argument to a method

in exactly the same way that any variable of the array

base type can be an argument

6-5

 ArrayOperations9.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations9.java
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc

Pitfall: Use of = and == with Arrays

 The equality operator (==) only tests two arrays to
see if they are stored in the same location in the
computer's memory

 It does not test two arrays to see if they contain the
same values

 The result of if(a == b) will be true if a and b
point to the same memory address (and, therefore,
reference the same array), and false otherwise

6-6

Pitfall: Use of = and == with Arrays

 In the same way that an equals method
can be defined for a class, an
equalsArray method (notice that this
is just any name) can be defined for a type
of array

 The following method tests two integer arrays
to see if they contain the same integer values

6-7

Pitfall: Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] b)

{

 if (a.length != b.length) return false;

 else

 {

 int i = 0;

 while (i < a.length)

 {

 if (a[i] != b[i])

 return false;

 i++;

 }

 }

 return true;

}

6-8

Methods That Return an Array

 In Java, a method may also return an array
 The return type is specified in the same way that an array

parameter is specified
public static int[]

 incrementArray(int[] a, int increment)

{

 int[] temp = new int[a.length];

 int i;

 for (i = 0; i < a.length; i++)

 temp[i] = a[i] + increment;

 return temp;

}

6-9

 ArrayOperations10.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations10.java
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc

Partially Filled Arrays

 The exact size needed for an array is not always known
when a program is written, or it may vary from one run
of the program to another

 A common way to handle this is to declare the array to
be of the largest size that the program could possibly
need

 Care must then be taken to keep track of how much of
the array is actually used
 An indexed variable that has not been given a meaningful

value must never be referenced

6-10

Partially Filled Arrays

 A variable should be used to keep track of

how many elements are currently stored in

an array

6-11

 ArrayOperations11.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations11.java
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc

Privacy Leaks with Array Instance Variables

 If a method return the contents of an array, special care
must be taken

public double[] getArray()

{

 return anArray;//BAD!

}

 The example above will result in a privacy leak

 Instead, an accessor method should return a reference to a
deep copy of the private array object

6-12

 ArrayOperations12.java (MS-Word file)

 ArrayOperations13.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations12.java
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc

Privacy Leaks with Array Instance Variables

 If a private instance variable is an array that has a class as its base
type, then copies must be made of each class object in the array
when the array is copied:

public ClassType[] getArray()

{

 ClassType[] temp = new ClassType[count];

 for (int i = 0; i < count; i++)

 temp[i] = new ClassType(someArray[i]);

 return temp;

}

6-13

Passing Multidimensional Arrays as

Method Parameters

Multidimensional arrays can be passed as parameters to methods in
the same fashion as for one-dimensional arrays.

6-14

 ArrayOperations16.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations16.java
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc

Multidimensional Array as Returned Values

 Methods may have a multidimensional array
type as their return type

 They use the same kind of type specification as for a
multidimensional array parameter

public double[][] aMethod()

{

 . . .

}

 The method aMethod returns an array of double

6-15

Ragged Arrays

 Each row in a two-dimensional array need not
have the same number of elements

 Different rows can have different numbers of
columns

 An array that has a different number of elements
per row it is called a ragged array

6-16

Ragged Arrays

double[][] a = new double[3][5];

 The above line is equivalent to the following:

double [][] a;

a = new double[3][]; //Note below

a[0] = new double[5];

a[1] = new double[5];

a[2] = new double[5];

 Note that the second line makes a the name of an array with room for 3

entries, each of which can be an array of doubles that can be of any length

 The next 3 lines each create an array of doubles of size 5

6-17

Ragged Arrays

double [][] a;

a = new double[3][];

 Since the above line does not specify the size of a[0], a[1],

or a[2], each could be made a different size instead:

a[0] = new double[5];

a[1] = new double[10];

a[2] = new double[4];

6-18

 RaggedArrays1.java (MS-Word file)

 RaggedArrays2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/RaggedArrays1.java
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc

Enumerated Types

 An enumerated type is a type in which all the values are given in a (typically) short list

 enum TypeName {VALUE_1, VALUE_2, …, VALUE_N};

Example:

 enum WorkDays {MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRODAY};

 The definition of an enumerated type is normally placed outside of all methods

 Once an enumerated type is defined, variables can be declared from this enumerated
type

 Note that a value of an enumerated type is a kind of named constant and so, by
convention, is spelled with all uppercase letters

6-19

Enumerated Types Example

 A variable of this type can be declared as
follows:

WorkDay meetingDay, availableDay;

 The value of a variable of this type can be set
to one of the values listed in the definition of
the type, or else to the special value null:

meetingDay = WorkDay.THURSDAY;

availableDay = null;

6-20

Enumerated Types Usage

 Just like other types, variable of this type can be declared
and initialized at the same time:
WorkDay meetingDay = WorkDay.THURSDAY;

 Note that the value of an enumerated type must be prefaced with
the name of the type

 The value of a variable can be output using println

 The code:

System.out.println(meetingDay);

 Will produce the following output:

THURSDAY

 As will the code:

System.out.println(WorkDay.THURSDAY);

 Note that the type name WorkDay is not output

6-21

Enumerated Types Usage

 Two variables or constants of an enumerated type can
be compared using the equals method or the ==
operator

 However, the == operator has a nicer syntax

if (meetingDay == availableDay)

 System.out.println("Meeting will be on

schedule.");

if (meetingDay == WorkDay.THURSDAY)

 System.out.println("Long weekend!");

6-22

An Enumerated Type

6-23

Some Methods Included with Every

Enumerated Type (Part 1 of 3)

6-24

Some Methods Included with Every

Enumerated Type (Part 2 of 3)

6-25

Some Methods Included with Every

Enumerated Type (Part 3 of 3)

6-26

The values Method

 To get the full potential from an enumerated type, it is often
necessary to cycle through all the values of the type

 Every enumerated type is automatically provided with the static
method values() which provides this ability

 It returns an array whose elements are the values of the enumerated type

given in the order in which the elements are listed in the definition of the
enumerated type

 The base type of the array that is returned is the enumerated type

6-27

The Method values (Part 1 of 2)

6-28

The Method values (Part 2 of 2)

6-29

