
Comp 248

Introduction to Programming

Chapter 6 Arrays
Part C

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2007-2016 Aiman Hanna

All rights reserved

Initializer Lists

 An initializer list can be used to instantiate and initialize an
array in one step

 The values are delimited by braces and separated by
commas

 Examples:

 int[] units = {147, 323, 89, 933, 540,

 269, 97, 114, 298, 476};

 char[] letterGrades = {'A', 'B', 'C', 'D',
’F'};

6-2

Array of Characters

 An Array of Characters Is Not a String

char[] a = {'A', 'B', 'C'};

String s = a; //Illegal!

 However, an array of characters can be converted
to an object of type String

6-3

 CharArrays1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/CharArrays1.java
http://aimanhanna.com/concordia/comp248/ArrayOperations8.java
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc

Arrays of Objects

 The base type of an array can be a class type
Car[] carArr = new Car[20];

 VERY IMPOTRANT:

 However, this will NOT create 20 Car objects; since
each of the 20 elements of the array are initialized to
null

 Any attempt to reference any them at this point would result
in a "null pointer exception" error message

6-4

 ObjectArrays1.java (MS-Word file)

 ObjectArrays2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ObjectArrays1.java
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc

Array As Method Parameters

 Both array indexed variables and entire arrays

can be used as arguments to methods

 An indexed variable can be an argument to a method

in exactly the same way that any variable of the array

base type can be an argument

6-5

 ArrayOperations9.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations9.java
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc

Pitfall: Use of = and == with Arrays

 The equality operator (==) only tests two arrays to
see if they are stored in the same location in the
computer's memory

 It does not test two arrays to see if they contain the
same values

 The result of if(a == b) will be true if a and b
point to the same memory address (and, therefore,
reference the same array), and false otherwise

6-6

Pitfall: Use of = and == with Arrays

 In the same way that an equals method
can be defined for a class, an
equalsArray method (notice that this
is just any name) can be defined for a type
of array

 The following method tests two integer arrays
to see if they contain the same integer values

6-7

Pitfall: Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] b)

{

 if (a.length != b.length) return false;

 else

 {

 int i = 0;

 while (i < a.length)

 {

 if (a[i] != b[i])

 return false;

 i++;

 }

 }

 return true;

}

6-8

Methods That Return an Array

 In Java, a method may also return an array
 The return type is specified in the same way that an array

parameter is specified
public static int[]

 incrementArray(int[] a, int increment)

{

 int[] temp = new int[a.length];

 int i;

 for (i = 0; i < a.length; i++)

 temp[i] = a[i] + increment;

 return temp;

}

6-9

 ArrayOperations10.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations10.java
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc

Partially Filled Arrays

 The exact size needed for an array is not always known
when a program is written, or it may vary from one run
of the program to another

 A common way to handle this is to declare the array to
be of the largest size that the program could possibly
need

 Care must then be taken to keep track of how much of
the array is actually used
 An indexed variable that has not been given a meaningful

value must never be referenced

6-10

Partially Filled Arrays

 A variable should be used to keep track of

how many elements are currently stored in

an array

6-11

 ArrayOperations11.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations11.java
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc

Privacy Leaks with Array Instance Variables

 If a method return the contents of an array, special care
must be taken

public double[] getArray()

{

 return anArray;//BAD!

}

 The example above will result in a privacy leak

 Instead, an accessor method should return a reference to a
deep copy of the private array object

6-12

 ArrayOperations12.java (MS-Word file)

 ArrayOperations13.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations12.java
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc

Privacy Leaks with Array Instance Variables

 If a private instance variable is an array that has a class as its base
type, then copies must be made of each class object in the array
when the array is copied:

public ClassType[] getArray()

{

 ClassType[] temp = new ClassType[count];

 for (int i = 0; i < count; i++)

 temp[i] = new ClassType(someArray[i]);

 return temp;

}

6-13

Passing Multidimensional Arrays as

Method Parameters

Multidimensional arrays can be passed as parameters to methods in
the same fashion as for one-dimensional arrays.

6-14

 ArrayOperations16.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ArrayOperations16.java
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc

Multidimensional Array as Returned Values

 Methods may have a multidimensional array
type as their return type

 They use the same kind of type specification as for a
multidimensional array parameter

public double[][] aMethod()

{

 . . .

}

 The method aMethod returns an array of double

6-15

Ragged Arrays

 Each row in a two-dimensional array need not
have the same number of elements

 Different rows can have different numbers of
columns

 An array that has a different number of elements
per row it is called a ragged array

6-16

Ragged Arrays

double[][] a = new double[3][5];

 The above line is equivalent to the following:

double [][] a;

a = new double[3][]; //Note below

a[0] = new double[5];

a[1] = new double[5];

a[2] = new double[5];

 Note that the second line makes a the name of an array with room for 3

entries, each of which can be an array of doubles that can be of any length

 The next 3 lines each create an array of doubles of size 5

6-17

Ragged Arrays

double [][] a;

a = new double[3][];

 Since the above line does not specify the size of a[0], a[1],

or a[2], each could be made a different size instead:

a[0] = new double[5];

a[1] = new double[10];

a[2] = new double[4];

6-18

 RaggedArrays1.java (MS-Word file)

 RaggedArrays2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/RaggedArrays1.java
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc

Enumerated Types

 An enumerated type is a type in which all the values are given in a (typically) short list

 enum TypeName {VALUE_1, VALUE_2, …, VALUE_N};

Example:

 enum WorkDays {MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRODAY};

 The definition of an enumerated type is normally placed outside of all methods

 Once an enumerated type is defined, variables can be declared from this enumerated
type

 Note that a value of an enumerated type is a kind of named constant and so, by
convention, is spelled with all uppercase letters

6-19

Enumerated Types Example

 A variable of this type can be declared as
follows:

WorkDay meetingDay, availableDay;

 The value of a variable of this type can be set
to one of the values listed in the definition of
the type, or else to the special value null:

meetingDay = WorkDay.THURSDAY;

availableDay = null;

6-20

Enumerated Types Usage

 Just like other types, variable of this type can be declared
and initialized at the same time:
WorkDay meetingDay = WorkDay.THURSDAY;

 Note that the value of an enumerated type must be prefaced with
the name of the type

 The value of a variable can be output using println

 The code:

System.out.println(meetingDay);

 Will produce the following output:

THURSDAY

 As will the code:

System.out.println(WorkDay.THURSDAY);

 Note that the type name WorkDay is not output

6-21

Enumerated Types Usage

 Two variables or constants of an enumerated type can
be compared using the equals method or the ==
operator

 However, the == operator has a nicer syntax

if (meetingDay == availableDay)

 System.out.println("Meeting will be on

schedule.");

if (meetingDay == WorkDay.THURSDAY)

 System.out.println("Long weekend!");

6-22

An Enumerated Type

6-23

Some Methods Included with Every

Enumerated Type (Part 1 of 3)

6-24

Some Methods Included with Every

Enumerated Type (Part 2 of 3)

6-25

Some Methods Included with Every

Enumerated Type (Part 3 of 3)

6-26

The values Method

 To get the full potential from an enumerated type, it is often
necessary to cycle through all the values of the type

 Every enumerated type is automatically provided with the static
method values() which provides this ability

 It returns an array whose elements are the values of the enumerated type

given in the order in which the elements are listed in the definition of the
enumerated type

 The base type of the array that is returned is the enumerated type

6-27

The Method values (Part 1 of 2)

6-28

The Method values (Part 2 of 2)

6-29

