Comp 243
Introduction to Programming
Chapter 6 Arrays

Part C

Dr. Aiman Hanna
Department of Computer Science & Software Engineering
Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3" Edition by Savitch;
which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by
Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley
Copyright © 2007-2016 Aiman Hanna
All rights reserved

UNIVERSITE PEARSON

T’Concordla v

UNIVERSITY Wesley

Initializer Lists

® An smitializer list can be used to instantiate and initialize an
array in one step

m The values are delimited by braces and separated by
commas

= Fxamples:

int[] units = {147, 323, 89, 933, 540,
269, 97, 114, 298, 476} ;

char[] letterGrades = {'A', 'B', 'C', 'D'
IF'};

Array of Characters

m An Array of Characters Is Not a String

char[] a {'A', 'B', 'C'};
String s = a; //Illegal!

m However, an array of characters can be converted
to an object of type String

m CharArrays].java s-Word fil)

6-3

http://aimanhanna.com/concordia/comp248/CharArrays1.java
http://aimanhanna.com/concordia/comp248/ArrayOperations8.java
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/CharArrays1.java.docdoc

Arrays of Objects

m The base type of an array can be a class type
Car[] carArr = new Car[20];

m VERY IMPOTRANT:

However, this will NOT create 20 Car objects; since

each of the 20 elements of the array are initialized to
null

= Any attempt to reference any them at this point would result
in a "'null pointer exception” error message

m ObjectArraysl.java (s-Word fie)

m ObjectArrays2.java (Ms-Word fil)

6-4

http://aimanhanna.com/concordia/comp248/ObjectArrays1.java
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays1.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc
http://aimanhanna.com/concordia/comp248/ObjectArrays2.java.docdoc

Array As Method Parametets

m Both array indexed variables and entire arrays
can be used as arguments to methods

= An indexed variable can be an argument to a method
in exactly the same way that any variable of the array
base type can be an argument

B ArrayOperations9.java ws-word fie)

6-5

http://aimanhanna.com/concordia/comp248/ArrayOperations9.java
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations9.java.docdoc

Pitfall: Use of = and == with Arrays

m The equality operator (==) only tests two arrays to
see if they are stored in the same location in the
computer's memory

= [t does not test two arrays to see if they contain the
same values

m Theresultof if (a == b) will be trueifaandb
point to the same memory address (and, therefore,
reference the same array), and false otherwise

6-6

Pitfall: Use of = and == with Arrays

m [n the same way that an equals method
can be defined for a class, an
equalsArray method (notice that this
is just any name) can be defined for a type
of array

m The following method tests two integer arrays
to see if they contain the same integer values

6-7

Pitfall: Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] Db)
{
if (a.length !'= b.length) return false;
else
{
int i = 0;
while (i < a.length)
{
if (a[i] '= b[1i])
return false;
1++4+;
}
}

return true;

6-8

Methods That Return an Array

m In Java, a method may also return an array

= The return type is specified in the same way that an atray
parameter is specified
public static int/[]
incrementArray (int[] a, int increment)

{
int[] temp = new int[a.length];

int 1i;
for (1 = 0; 1 < a.length; i++)
temp[i] = a[i] + increment;

return temp;

}

m ArrayOperations10.java (s-word file

6-9

http://aimanhanna.com/concordia/comp248/ArrayOperations10.java
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations10.java.docdoc

Partially Filled Arrays

m The exact size needed for an array is not always known
when a program is written, or it may vary from one run
of the program to another

m A common way to handle this is to declare the array to
be of the largest size that the program could possibly
need

m Care must then be taken to keep track of how much of
the array is actually used

= An indexed variable that has not been given a meaningtul
value must never be referenced

6-10

Partially Filled Arrays

m A variable should be used to keep track of
how many elements are currently stored in
an array

m ArrayOperations]].java os-word file

6-11

http://aimanhanna.com/concordia/comp248/ArrayOperations11.java
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations11.java.docdoc

Privacy Leaks with Array Instance Variables

m [f a method return the contents of an array, special care
must be taken

m The example above will result in a privacy leak

m Instead, an accessor method should return a reference to a
deep copy of the private array object

m ArrayOperations12.java (s-word file

B ArrayOperations]3.java (s-word filc)

6-12

http://aimanhanna.com/concordia/comp248/ArrayOperations12.java
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations12.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations13.java.docdoc

Privacy Leaks with Array Instance Variables

m [f a private instance variable 1s an array that has a class as its base
type, then copies must be made of each class object in the array
when the array is copied:

public ClassType[] getArray ()
{
ClassType[] temp = new ClassType[count];
for (int 1 = 0; i1 < count; i++)
temp[i] = new ClassType(someArray[i]) ;
return temp;

6-13

Passing Multidimensional Arrays as
Method Parameters

Multidimensional arrays can be passed as parameters to methods in
the same fashion as for one-dimensional arrays.

m ArrayOperations16.java (s-word file

6-14

http://aimanhanna.com/concordia/comp248/ArrayOperations16.java
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc
http://aimanhanna.com/concordia/comp248/ArrayOperations16.java.docdoc

Multidimensional Array as Returned Values

m Methods may have a multidimensional array
type as their return type

m They use the same kind of type specification as for a
multidimensional array parameter

public double[][] aMethod()
{

}
m The method aMethod returns an array of double

6-15

Ragged Arrays

m Hach row in a two-dimensional array need not
have the same number of elements

m Different rows can have different numbers of
columns

m An array that has a different number of elements
per row it is called a ragged array

6-16

Ragged Arrays

double[][] a = new double[3][5];

m The above line is equivalent to the following:
double [][] a;
a = new double[3][]; //Note below
a[0] = new double[5];
al[l] = new double[5];
al[2] = new double[5];

= Note that the second line makes a the name of an array with room for 3
entries, each of which can be an array of doubles #hat can be of any length

m The next 3 lines each create an array of doubles of size 5

6-17

Ragged Arrays

double [][] a;
a = new double[3][];

m Since the above line does not specity the sizeof a[0],a[1],
ora[2], each could be made a different size instead:

a[0] = new double[5];
al[l] = new double[10];
al[2] = new double[4];

m RagoedArraysl.java os-word filc)

m Ragoed Arrays2.java (s-Word filc)

6-18

http://aimanhanna.com/concordia/comp248/RaggedArrays1.java
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays1.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc
http://aimanhanna.com/concordia/comp248/RaggedArrays2.java.doc

Enumerated Types

®m An enumerated type 1s a type in which all the values are given in a (typically) short list
enum TypeName {VALUE 1, VALUE 2, .., VALUE N};
Example:

enum WorkDays {MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRODAY} ;

m The definition of an enumerated type is normally placed outside of all methods

®m Once an enumerated type 1s defined, variables can be declared from this enumerated
type
m Note that a value of an enumerated type 1s a kind of named constant and so, by
convention, is spelled with all uppercase letters

6-19

Enumerated Types Example

m A variable of this type can be declared as
follows:

WorkDay meetingDay, availableDay;

m The value of a variable of this type can be set
to one of the values listed in the definition of
the type, or else to the special value null:

meetingDay = WorkDay.THURSDAY;
availableDay = null;

6-20

Enumerated Types Usage

m Just like other types, variable of this type can be declared
and initialized at the same time:
WorkDay . THURSDAY ;

= Note that the value of an enumerated type must be prefaced with
the name of the type

WorkDay meetingDay

m The value of a variable can be output using println
m The code:
System.out.println (meetingDay) ;

m Wil produce the following output:
THURSDAY

= As will the code:
System.out.println (WorkDay . THURSDAY) ;

= Note that the type name WorkDay is not output

6-21

Enumerated Types Usage

Two variables or constants of an enumerated type can
be compared using the equals method or the ==
operator

However, the == operator has a nicer syntax
i1f (meetingDay == availableDay)

System.out.println ("Meeting will be on
schedule.") ;

if (meetingDay == WorkDay.THURSDAY)
System.out.println("Long weekend!") ;

6-22

An Enumerated Type

An Enumerated Type

public class EnumDemo

{
enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

public static void main(String[] args)
{
WorkDay startDay = WorkDay.MONDAY;
WorkDay endDay = WorkDay.FRIDAY;

System.out.println("Work starts on " + startDay);

System.out.println("Work ends on " + endDay);
10

11

SAMPLE DIALOGUE

Work starts on MONDAY
Work ends on FRIDAY

Some Methods Included with Every
Enumerated Type (Part 1 of 3)

Some Methods Included with Every Enumerated Type

public boolean equals(Any_Value_Of An_Enumerated_Type)

Returns true if its argument is the same value as the calling value. While it is perfectly legal to use
equals, it is easier and more common to use ==.

EXAMPLE

For enumerated types, (Valuer.equals(Value2)) is equivalent to (Valuer == Valuez).
public String toString()

Returns the calling value as a string. This is often invoked automatically. For example, this method is
invoked automatically when you output a value of the enumerated type using System.out.println or
when you concatenate a value of the enumerated type to a string. See Display 6.15 for an example of this
automatic invocation.

EXAMPLE

WorkDay .MONDAY . toString () returns "MONDAY".
The enumerated type WorkDay is defined in Display 6.13.

(continued)

Some Methods Included with Every
Enumerated Type (Part 2 of 3)

Some Methods Included with Every Enumerated Type

public int ordinal()

Returns the position of the calling value in the list of enumerated type values. The first position is 0.
EXAMPLE

WorkDay .MONDAY.ordinal () returns O, WorkDay . TUESDAY .ordinal () returns 1, and so forth. The
enumerated type WorkDay is defined in Display 6.13.

public int compareTo(Any_Value_Of_The_Enumerated_Type)

Returns a negative value if the calling object precedes the argument in the list of values, returns O if the
calling object equals the argument, and returns a positive value if the argument precedes the calling
object.

EXAMPLE

WorkDay . TUESDAY . compareTo(WorkDay . THURSDAY) returns a negative value. The type WorkDay is
defined in Display 6.13.

public EnumeratedType[] values()

(continued)

Some Methods Included with Every
Enumerated Type (Part 3 of 3)

Some Methods Included with Every Enumerated Type

Returns an array whose elements are the values of the enumerated type in the order in which they are
listed in the definition of the enumerated type.

EXAMPLE

See Display 6.15.

public static EnumeratedType valueOf(String name)

Returns the enumerated type value with the specified name. The string name must be an exact match.

EXAMPLE

WorkDay.valueOf ("THURSDAY")returns WorkDay . THURSDAY. The type WorkDay is defined in
Display 6.13.

6-26

The values Method

m To get the full potential from an enumerated type, it is often
necessary to cycle through all the values of the type

m Every enumerated type is automatically provided with the static
method values () which provides this ability

m [t returns an array whose elements are the values of the enumerated type
given in the order in which the elements are listed in the definition of the
enumerated type

= The base type of the array that is returned is the enumerated type

6-27

The Method values (Part 1 of 2)

The Method values

import java.util.Scanner;

public class EnumValuesDemo

{
enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

public static void main(String[] args)

{
WorkDay[] day = WorkDay.values();

Scanner keyboard = new Scanner(System.in);

double hours = @, sum = 0; This is equivalent to day[1] . toString().

for (int 1 = 0; 1 < day.length; i++) }‘///

{
System.out.println("Enter hours worked for " + day[il);
hours = keyboard.nextDouble();
sum = sum + hours;

}

"

System.out.println("Total hours work = + sum);

(continued)

The Method values (Part 2 of 2)

The Method values

SAMPLE DIALOGUE

Enter
8
Enter
8
Enter
8
Enter
8
Enter
7,5
Total

hours

hours

hours

hours

hours

hours

worked

worked

worked

worked

worked

work =

for MONDAY

for TUESDAY

for WEDNESDAY

for THURSDAY

for FRIDAY

39.5

6-29

