Comp 248

Introduction to Programming
Chapter 4 & 5 Defining Classes

Part B

Dr. Aiman Hanna
Department of Computer Science & Software Engineering
Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3™ Edition by Savitch;
which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by
Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley
Copyright © 2007-2016 Aiman Hanna
All rights reserved

UNIVERSITE PEARSON

T’Concordla T

UNIVERSITY Wesley

Overloading

m Overloading 1s when two or more methods 2 the same
class have the same method name

m To be valid, any two definitions of the method
name must have different signatures

= A signature consists of the name of a method together
with its parameter list
m Differing signatures must have different numbers and/or

types of parameters

m Overloading].java (s-word file

)

http://aimanhanna.com/concordia/comp248/Overloading1.java
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc

Overloading and Automatic Type Conversion

m [f Java cannot find a method signature that exactly
matches a method invocation, it will try to use
automatic type convetsion

m The interaction of overloading and automatic type
conversion can have unintended results

® |n some cases of overloading, because of automatic
type conversion, a single method invocation can be
resolved in multiple ways

= Ambiguous method invocations will produce an error in Java

43

You Can Not Overload Operators in Java

m Although many programming languages, such as
C++, allow you to overload operators (+, -,
etc.), Java does not permit this

= You may only use a method name and ordinary
method syntax to carry out the operations you desire

4.4

Default Variable Initializations

m [nstance class variables are automatically initialized in
Java
= boolean types are initialized to false
= Other primitives are initialized to the zerv of their type
m Class types are initialized to null

m However, it 1s a better practice to explicitly initialize
instance variables in a constructor

m Note: lLocal variables are not automatically initialized

45

The this Parameter

m All instance variables are understood to have <the
calling object>. in front of them

m [f an explicit name for the calling object is needed, the
keyword this can be used

m myInstanceVariable always means and is always
interchangeable with this.myInstanceVariable

m VehicleCompareS.java (Ms-Word file

46

http://aimanhanna.com/concordia/comp248/VehicleCompare5.java
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc

The this Parameter

m this mustbe used if a parameter or other
local variable with the same name is used in the
method

m Otherwise, all instances of the variable name will be
interpreted as local

int someVariable = this.someVariable
t t

local instance

4.7

Information Hiding and Encapsulation

m [nformation hiding 1s the practice of separating how to use a class
from the details of its implementation

m _Abstraction is another term used to express the concept of discarding
details in order to avoid information overload

® Encapsulation means that the data and methods of a class are
combined into a single unit (i.e., a class object), which hides the
implementation details

= Knowing the details is unnecessary because interaction with the object
occurs via a well-defined and simple interface

m In Java, hiding details is done by marking them private

4.8

Static Methods

m Sometimes, it i1s desired to use a function of a class without
creating objects from this class. In such case, the method can be
created as sfatic

m When a static method 1s defined, the keyword static is
placed in the method header
public static returnedType myMethod (parameters)

{ . . .}
m Static methods are invoked using the class name in place of a

calling object

maxMiles = MetricConverter.kmToMile (maxSpeed) ;

m VehicleSearchb.java s-word file

5-9

http://aimanhanna.com/concordia/comp248/VehicleSearch5.java
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc

Pitfall: Invoking a Non-static Method Within
a Static Method

B A static method cannot refer to an instance variable of
the class, and it cannot invoke a non-static method of
the class

m A static method has no this, so it cannot use an instance
variable or method that has an implicit or explicit this for a
calling object

m A static method can invoke another static method, however

Static Variables

® A slatic variable 1s a variable that belongs to the class as a whole,
and not just to one object

m There is only one copy of a static variable per class, unlike instance
variables where each object has its own copy

m All objects of the class can read and change a static variable

m Although a static method cannot access an instance variable, a
static method can access a static variable

m A static variable is declared like an instance variable, with the
addition of the modifier static

private static double bestPrice;

m VehicleSearch8.java s-word file

5-11

http://aimanhanna.com/concordia/comp248/VehicleSearch8.java
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc

Overloading Constructors

m Constructors can also be overloaded to
provide different object creation options

m VehicleSearch6.java os-word file

4-12

http://aimanhanna.com/concordia/comp248/VehicleSearch6.java
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc

Copy Constructors

B A copy constructor 1s a constructor with a single argument
ot the same type as the class

m The copy constructor should create an object that is a
separate, independent object, but with the instance

variables set so that it 1s an exact copy of the argument
object

m VehicleSearch7.java os-word file

m Revisit VehicleSearch8.java os-word fie)

http://aimanhanna.com/concordia/comp248/VehicleSearch7.java
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc

The StringTokenizer Class

m The StringTokenizer class is used to recover
the words or fokens in a multi-word String

® You can use whitespace characters to separate each
token, or you can specify the characters you wish to use
as separators

® In order to use the StringTokenizer class, be sute
to include the following at the start of the file:

import java.util.StringTokenizer;

m Strings2.1ava (s-Word file

4-14

http://aimanhanna.com/concordia/comp248/Strings2.java
http://aimanhanna.com/concordia/comp248/Strings2.java.doc
http://aimanhanna.com/concordia/comp248/Strings2.java.doc
http://aimanhanna.com/concordia/comp248/Strings2.java.doc

Some Methods in the StringTokenizer
Class (Part 1 of 2)

Some Methods in the Class StringTokenizer

The class StringTokenizer isin the java.util package.

public StringTokenizer(String theString)

Constructor for a tokenizer that will use whitespace characters as separators when finding tokens in
theString.

public StringTokenizer(String theString, String delimiters)

Constructor for a tokenizer that will use the characters in the string delimiters as separators when
finding tokens in theString.

public boolean hasMoreTokens()

Tests whether there are more tokens available from this tokenizer's string. When used in conjunction with
nextToken, it returns true as long as nextToken has not yet returned all the tokens in the string;
returns false otherwise.

(continued)

Some Methods in the StringTokenizer
Class (Part 2 of 2)

Some Methods in the Class StringTokenizer

public String nextToken()

Returns the next token from this tokenizer’s string. (Throws NoSuchElementException if there are no
more tokens to return.)’

public String nextToken(String delimiters)

First changes the delimiter characters to those in the string delimiters. Then returns the next token from

this tokenizer’s string. After the invocation is completed, the delimiter characters are those in the string
delimiters.

(Throws NoSuchElementException if there are no more tokens to return. Throws
NullPointerException if delimiters is null.)

public int countTokens()

Returns the number of tokens remaining to be returned by nextToken.

4-16

The Math Class

m The Math class provides a number of standard
mathematical methods

= Itis found in the java . lang package, so it does not
require an import statement

= All of its methods and data are static, therefore they are
invoked with the class name Math instead of a calling object

m The Math class has two predefined constants, E (e, the base
of the natural logarithm system) and PI (7, 3.1415 ..)
area = Math.PI * radius * radius;

5-17

Some Methods in the Class Math
(Part 1 of 5)

Some Methods in the Class Math

The Math class is in the java. lang package, so it requires no import statement.

public static double pow(double base, double exponent)

Returns base to the power exponent.

EXAMPLE
Math.pow(2.0,3.0) retums 8.0.

(continued)

5-18

Some Methods in the Class Math

(Part 2 of 5)

Some Methods in the Class Math

public
public
public
public

static double abs(double argument)
static float abs(float argument)
static long abs(long argument)
static int abs(int argument)

Returns the absolute value of the argument. (The method name abs is overloaded to produce four simi-
lar methods.)

EXAMPLE
Math.abs(—6) and Math.abs(6) both return 6. Math.abs(—5.5) and Math.abs(5.5) both return

5.5.

public
public
public
public

static double min(double nl, double n2)
static float min(float nl, float n2)
static long min(long nl, long n2)
static int min(int nl, int n2)

Returns the minimum of the arguments n1 and n2. (The method name min is overloaded to produce four
similar methods.)

EXAMPLE
Math.min(3, 2) returns 2.

(continued)

Some Methods in the Class Math
Part 3 of 5

Some Methods in the Class Math

public static double max(double nl, double n2)
public static float max(float nl, float n2)
public static long max(long nl, long n2)
public static int max(int nl, int n2)

Returns the maximum of the arguments n1 and n2. (The method name max is overloaded to produce four
similar methods.)
EXAMPLE

Math.max (3, 2) returns 3.

public static long round(double argument)
public static int round(float argument)

Rounds its argument.
EXAMPLE
Math.round(3.2) returns 3; Math. round(3.6) returns 4.

(continued)

Some Methods in the Class Math
(Part 4 of 5)

Some Methods in the Class Math

public static double ceil(double argument)

Returns the smallest whole number greater than or equal to the argument.

EXAMPLE
Math.ceil(3.2) and Math.ceil(3.9) both return 4.0.

(continued)

5-21

Some Methods in the Class Math
(Part 5 of 5)

Some Methods in the Class Math

public static double floor(double argument)

Returns the largest whole number less than or equal to the argument.
EXAMPLE
Math.floor(3.2) and Math.floor(3.9) both retumn 3.0.

public static double sqrt(double argument)

Returns the square root of its argument.
EXAMPLE
Math.sqrt(4) returns 2.0.

