
Comp 248

Introduction to Programming

Chapter 4 & 5 Defining Classes
Part B

Dr. Aiman Hanna

Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2007-2016 Aiman Hanna

All rights reserved

Overloading

 Overloading is when two or more methods in the same

class have the same method name

 To be valid, any two definitions of the method

name must have different signatures

 A signature consists of the name of a method together

with its parameter list

 Differing signatures must have different numbers and/or

types of parameters

4-2

 Overloading1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Overloading1.java
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc
http://aimanhanna.com/concordia/comp248/Overloading1.java.doc

Overloading and Automatic Type Conversion

 If Java cannot find a method signature that exactly
matches a method invocation, it will try to use
automatic type conversion

 The interaction of overloading and automatic type
conversion can have unintended results

 In some cases of overloading, because of automatic
type conversion, a single method invocation can be
resolved in multiple ways
 Ambiguous method invocations will produce an error in Java

4-3

You Can Not Overload Operators in Java

 Although many programming languages, such as

C++, allow you to overload operators (+, -,

etc.), Java does not permit this

 You may only use a method name and ordinary

method syntax to carry out the operations you desire

4-4

Default Variable Initializations

 Instance class variables are automatically initialized in
Java
 boolean types are initialized to false

 Other primitives are initialized to the zero of their type

 Class types are initialized to null

 However, it is a better practice to explicitly initialize
instance variables in a constructor

 Note: Local variables are not automatically initialized

4-5

The this Parameter

 All instance variables are understood to have <the

calling object>. in front of them

 If an explicit name for the calling object is needed, the

keyword this can be used

 myInstanceVariable always means and is always

interchangeable with this.myInstanceVariable

4-6

 VehicleCompare5.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleCompare5.java
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare5.java.doc

The this Parameter

 this must be used if a parameter or other

local variable with the same name is used in the

method

 Otherwise, all instances of the variable name will be

interpreted as local

 int someVariable = this.someVariable

local instance

4-7

Information Hiding and Encapsulation

 Information hiding is the practice of separating how to use a class
from the details of its implementation
 Abstraction is another term used to express the concept of discarding

details in order to avoid information overload

 Encapsulation means that the data and methods of a class are
combined into a single unit (i.e., a class object), which hides the
implementation details
 Knowing the details is unnecessary because interaction with the object

occurs via a well-defined and simple interface

 In Java, hiding details is done by marking them private

4-8

Static Methods
 Sometimes, it is desired to use a function of a class without

creating objects from this class. In such case, the method can be
created as static

 When a static method is defined, the keyword static is
placed in the method header
public static returnedType myMethod(parameters)

{ . . . }

 Static methods are invoked using the class name in place of a
calling object
maxMiles = MetricConverter.kmToMile(maxSpeed);

5-9

 VehicleSearch5.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch5.java
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch5.java.doc

Pitfall: Invoking a Non-static Method Within

a Static Method

 A static method cannot refer to an instance variable of

the class, and it cannot invoke a non-static method of

the class

 A static method has no this, so it cannot use an instance

variable or method that has an implicit or explicit this for a

calling object

 A static method can invoke another static method, however

5-10

Static Variables
 A static variable is a variable that belongs to the class as a whole,

and not just to one object
 There is only one copy of a static variable per class, unlike instance

variables where each object has its own copy

 All objects of the class can read and change a static variable

 Although a static method cannot access an instance variable, a
static method can access a static variable

 A static variable is declared like an instance variable, with the
addition of the modifier static

private static double bestPrice;

5-11

 VehicleSearch8.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch8.java
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc

Overloading Constructors

 Constructors can also be overloaded to

provide different object creation options

4-12

 VehicleSearch6.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch6.java
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch6.java.doc

Copy Constructors

 A copy constructor is a constructor with a single argument
of the same type as the class

 The copy constructor should create an object that is a
separate, independent object, but with the instance
variables set so that it is an exact copy of the argument
object

5-13

 VehicleSearch7.java (MS-Word file)

 Revisit VehicleSearch8.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch7.java
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch7.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch8.java.doc

The StringTokenizer Class

 The StringTokenizer class is used to recover

the words or tokens in a multi-word String

 You can use whitespace characters to separate each

token, or you can specify the characters you wish to use

as separators

 In order to use the StringTokenizer class, be sure

to include the following at the start of the file:

 import java.util.StringTokenizer;

4-14

 Strings2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Strings2.java
http://aimanhanna.com/concordia/comp248/Strings2.java.doc
http://aimanhanna.com/concordia/comp248/Strings2.java.doc
http://aimanhanna.com/concordia/comp248/Strings2.java.doc

Some Methods in the StringTokenizer

Class (Part 1 of 2)

4-15

Some Methods in the StringTokenizer

Class (Part 2 of 2)

4-16

The Math Class

 The Math class provides a number of standard
mathematical methods
 It is found in the java.lang package, so it does not

require an import statement

 All of its methods and data are static, therefore they are
invoked with the class name Math instead of a calling object

 The Math class has two predefined constants, E (e, the base
of the natural logarithm system) and PI (, 3.1415 . . .)
area = Math.PI * radius * radius;

5-17

Some Methods in the Class Math

(Part 1 of 5)

5-18

Some Methods in the Class Math

(Part 2 of 5)

5-19

Some Methods in the Class Math

(Part 3 of 5)

5-20

Some Methods in the Class Math

(Part 4 of 5)

5-21

Some Methods in the Class Math

(Part 5 of 5)

5-22

