Comp 243
Introduction to Programming
Chapter 4 - Defining Classes

Part A

Dr. Aiman Hanna
Department of Computer Science & Software Engineering
Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3™ Edition by Savitch;
which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by
Pearson Education / Addison-Wesley.

Copyright © 2007 Pearson Addison-Wesley
Copyright © 2008-2016 Aiman Hanna
All rights reserved

UNIVERSITE PEARSON

T’Concordla T

UNIVERSITY Wesley

Class Definitions

We have already been using some of the predefined classes, 1.c.

String and Scanner classes
We can add/define our own classes to the language

A class determines:

m 1) Attributes, or Instance 1 ariables: the types of data that an object can
contain,

m 2) Methods: the actions it can perform

Once a new class 1s defined, objects, or instances, can be created
from this class

)

Class Definitions

int x, y;

Data declarations
char ch;

Method declarations

43

The new Operator

®m An object of a class is named or declared by a variable of the class

type:

ClassName objectName;

m The new operator must then be used to create the object and
associate it with its variable name (however, some few exceptions do
exiSt):

objectName = new ClassName () ;

B These can be combined as follows:
ClassName objectName = new ClassName () ;

Example:
Car cl = new Car(); // Car is the class name and
// cl is the object name

// IMPORTANT NOTE: In fact,
// cl is a pointer/reference
// to the object

4.4

Instance Variables and Methods

m [nstance variables (attributes) can be defined as in the
following two examples

= Note the public modifier (for now):
public int numberOfDoors;
public double Price;

m [n order to refer to a particular instance variable, preface
it with its object name as follows:

cl.price
c2.price
cl . numberOfDoors

cl & c2 are just two objects from the class

45

Instance Variables and Methods

m Method definitions are divided into two parts: a heading and a

method body:
public void myMethod () «— // Heading
{
code to perform some action | // Body

and/or compute a value >

}

J

m Methods are invoked using the name of the calling object and
the method name as follows:

objName .methodName () ;

Example:
Cl.getNumberOfDoors () ;

m [nvoking a method 1s equivalent to executing the method body

4.6

File Names and Locations

m Reminder: a Java file must be given the same
name as the class it contains with an added
. java at the end

= For example, a class named Car must be in a file
named Car. java

m For now, your program and all the classes it uses
should be in the same directory or folder

4.7

More About Methods

B There are two kinds of methods:

® Methods that compute/perform an action then
return a value

Methods that compute/perform an action then does
not return a value

m This type of method 1s called a void method; in other
wortds, it returns void

m Notice that in both cases, the function do
indeed perform an action

4.8

More About Methods

m A method that returns a value must specify the

type of that value 1n its heading:

public typeReturned methodName (paramList)
Note: paramList is optional

Examples:
public double getPrice() ;
public int getNumOfDoors () ;
public void setNumOfDoors (int nd); // nd is just

// a name

49

mainis avoid Method

m A program in Java is just a class that has a main
method

m When you give a command to run a Java program, the
run-time system invokes the method main

m Note that main 1s a void method, as indicated by its
heading:

public static void main(String[] args)

4-10

return Statements

m The body of both types of methods contains a list of

declarations and statements enclosed in a pair of braces

public <void or typeReturned> myMethod ()

{

declarations

statements

N

Body

4-11

return Statements

® The body of a method that returns a value must
also contain one or more return statements

B A return statement speciﬁes the value returned
and ends the method invocation:

return Expression;

m Expression can be any expression that evaluates
to something of the type returned listed in the
method heading

4-12

return Statements

® A void method need not contain a return
statement, unless there 1s a situation that
requires the method to end before all its code is
executed

® [n this context, since it does not return a value, a
return statement is used without an
expression:

return;

4-13

Method Definitions

B An invocation of a method that returns a value can be

used as an expression anyplace that a value of the
returned type can be used:

double pr;
pr = cl.getPrice() ;

®m An invocation of a void method 1s simply a statement:
objectName .methodName () ;

Examples:

cl.setPrice (20000) ;
cl.showModel () ;

m VehicleSearchl.java os-wWord file

4-14

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc

Example: The Vehicle Class

m See VehicleSearchl.java

4
class Vehicle ' 10000 |

int numOfDoors;
double price;

int maxSpeed;

280 |
v2

4|

| 10000 |

280 |
v3

4|

10000 |

280 |

vl, v2 & v3 upon creation

4-15

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java

Constructors

m A constructor is a special kind of method that is designed
to initialize the instance variables for an object:

public ClassName (anyParameters) {code}

® A constructor must have the same name as the class

= A constructor has no type returned, not even void

m VehicleSearch?2.java os-wWord file

4-16

http://aimanhanna.com/concordia/comp248/VehicleSearch2.java
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc

public and private Modifiers

m The modifier public means that there are no restrictions on
where an instance variable or method can be used

m The modifier private means that an instance variable or
method cannot be accessed by name outside of the class

m VehicleSearch3.java s-word file

m VehicleSearch4.java os-word file

417

http://aimanhanna.com/concordia/comp248/VehicleSearch4.java
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc

Include a No-Argument Constructot

® You should include a defanlt, or no-argument constructor as part of
your program. Default constructors will be discussed later in full
details.

m [f you do not include any constructors in your class, Java will
automatically create a default or no-argument constructor that takes
no arguments, performs no initializations, but allows the object
to be created

m [f you include even one constructor (possibly non-default) in
your class, Java will not provide this default constructor

4-18

IL.ocal Variables

m A variable declared within a method definition is
called a local variable

m All variables declared in the main method are local
variables

m All method parameters are local variables

m [f two methods each have a local variable of the
same name, they are still two entirely different
variables

4-19

Global Variables

B Some programming languages include another

kind of variable called a global variable

m The Java language does not have global variables

4-20

Blocks

® A block 1s another name for a compound statement, that
is, a set of Java statements enclosed in braces,{ }

m A variable declared within a block is local to that block,
and cannot be used outside the block

® Once a variable has been declared within a block, its
name cannot be used for anything else within the same
method definition

4-21

Declaring Variables in a for Statement

B You can declare one or more variables within the
initialization portion of a for statement

m A variable so declared will be local to the for loop,
and cannot be used outside of the loop

m If you need to use such a variable outside of a loop,
then declare it outside the loop

m Statements14.java (MS-Word file)

m Statements15.java (MS-Word file)

4-22

http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc

Parameters of a Primitive Type

m A method can accept no parameters, one parameter,
or few of them (parameter list)

m These parameter(s) are referred to as formal parameters

public void setVehicleInfo(int nd, double pr, int mxsp)

m When a method is invoked, the appropriate values
must be passed to the method in the form of
arguments, and must be in the right order

m These arguments are called actnal parameters

cl.setVehicleInfo (4, 12500.99, 280);

4-23

Parameters of a Primitive Type

m The type of each argument must be compatible with the type of
the corresponding parameter. The following two statements use
the method correctly

cl.setVehicleInfo (4, 12500.99, 280);

int n =5, m = 260;
double p = 19700.95;
cl.setVehicleInfo(n, p, m);

m NOTE: In both examples, the value of each argument (not the
variable name) is the one plugged into the corresponding
method parameter

m This method of plugging in arguments for formal parameters is known as
the call-by-value mechanism

m MethodParameters].java os-Word file
4-24

http://aimanhanna.com/concordia/comp248/MethodParameters1.java
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc

Parameters of a Primitive Type

m [f aroument and parameter types do not match exactly,
Java will attempt to make an automatic type conversion

= A primitive argument can be automatically type cast from any
of the following types, to any of the types that appear to its
right:
byte—>short—>int—>long—>float—>double
char A

4-25

Methods That Return a Boolean Value

B An invocation of a2 method that returns a value
of type boolean returns either true or
false

m Therefore, it 1s common practice to use an
invocation of such a method to control
statements and loops where a boolean
expression is expected

B Le. within if-else statements, while loops,
ctcC.

4-26

Comparing Objects of the Same Class for
Equality

® You cannot use == to compare objects

m VehicleComparel.java (s-word file

B [nstead use methods such as user-defined
equals, or toString to compare the objects

m VehicleCompare2.java (Ms-Word file

m VehicleCompare3.java (Ms-Word file

m VehicleCompare4.java (Ms-Word file

427

http://aimanhanna.com/concordia/comp248/VehicleCompare1.java
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc

Accessor and Mutator Methods

m Aeessor methods allow the programmer to obtain the value of an
object's instance variables

® The data can be accessed but not changed

= The name of an accessor method typically starts with the
word get

m Mutator methods allow the programmer to change the value of an
object's instance variables in a controlled manner

® Incoming data is typically tested and/or filtered

m The name of a mutator method typically starts with the word
set

4-28

Encapsulation

Encapsulation

An emapeuiawd class

Implementation details Interface available to a
hidden in the capsule: programmer using the class:

Private instance variables Comments Frogrammer who
Private constants Headings of public accessor, uses the class
Private methods mutator, and other methods

Bodies of public and Public defined constants

private method definitions

A class definition should have
no pub!ia instance variables.

A Class Has Access to Private Members of All
Objects of the Class

m Within the definition of a class, private members
of any object of the class can be accessed, not
just private members of the calling object

= For example, see the equals function in
VehicleCompare2.java (MS-Word file)

The function has access to the private date of the
passed object, vec

4-30

http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc

