
Comp 248

Introduction to Programming

Chapter 4 - Defining Classes
Part A

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2008-2016 Aiman Hanna

All rights reserved

Class Definitions

 We have already been using some of the predefined classes, i.e.
String and Scanner classes

 We can add/define our own classes to the language

 A class determines:
 1) Attributes, or Instance Variables: the types of data that an object can

contain,

 2) Methods: the actions it can perform

 Once a new class is defined, objects, or instances, can be created
from this class

4-2

Class Definitions

4-3

int x, y;

char ch;
Data declarations

Method declarations

The new Operator

 An object of a class is named or declared by a variable of the class
type:
 ClassName objectName;

 The new operator must then be used to create the object and
associate it with its variable name (however, some few exceptions do
exist):
 objectName = new ClassName();

 These can be combined as follows:
 ClassName objectName = new ClassName();

Example:

Car c1 = new Car(); // Car is the class name and

 // c1 is the object name

 // IMPORTANT NOTE: In fact,
 // c1 is a pointer/reference
 // to the object

4-4

Instance Variables and Methods

 Instance variables (attributes) can be defined as in the
following two examples
 Note the public modifier (for now):

 public int numberOfDoors;

 public double Price;

 In order to refer to a particular instance variable, preface
it with its object name as follows:
c1.price

c2.price

c1.numberOfDoors

c1 & c2 are just two objects from the class

4-5

 Method definitions are divided into two parts: a heading and a
method body:
 public void myMethod() // Heading

 {

 code to perform some action // Body

 and/or compute a value

 }

 Methods are invoked using the name of the calling object and
the method name as follows:
 objName.methodName();

Example:
C1.getNumberOfDoors();

 Invoking a method is equivalent to executing the method body

Instance Variables and Methods

4-6

File Names and Locations

 Reminder: a Java file must be given the same
name as the class it contains with an added
.java at the end

 For example, a class named Car must be in a file
named Car.java

 For now, your program and all the classes it uses
should be in the same directory or folder

4-7

More About Methods

 There are two kinds of methods:

 Methods that compute/perform an action then
return a value

 Methods that compute/perform an action then does
not return a value

 This type of method is called a void method; in other
words, it returns void

 Notice that in both cases, the function do
indeed perform an action

4-8

More About Methods

 A method that returns a value must specify the

type of that value in its heading:
 public typeReturned methodName(paramList)

Note: paramList is optional

Examples:

 public double getPrice();

 public int getNumOfDoors();

 public void setNumOfDoors(int nd); // nd is just

 // a name

4-9

main is a void Method

 A program in Java is just a class that has a main

method

 When you give a command to run a Java program, the

run-time system invokes the method main

 Note that main is a void method, as indicated by its

heading:
public static void main(String[] args)

4-10

return Statements

 The body of both types of methods contains a list of

declarations and statements enclosed in a pair of braces

 public <void or typeReturned> myMethod()

 {

 declarations Body

 statements

 }

4-11

return Statements

 The body of a method that returns a value must
also contain one or more return statements

 A return statement specifies the value returned
and ends the method invocation:

 return Expression;

 Expression can be any expression that evaluates
to something of the type returned listed in the
method heading

4-12

return Statements

 A void method need not contain a return
statement, unless there is a situation that
requires the method to end before all its code is
executed

 In this context, since it does not return a value, a
return statement is used without an
expression:

 return;

4-13

Method Definitions
 An invocation of a method that returns a value can be

used as an expression anyplace that a value of the
returned type can be used:
double pr;

pr = c1.getPrice();

 An invocation of a void method is simply a statement:
objectName.methodName();

Examples:

 c1.setPrice(20000);

 c1.showModel();

4-14

 VehicleSearch1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc

Example: The Vehicle Class

4-15

 See VehicleSearch1.java

v1, v2 & v3 upon creation

int numOfDoors;

double price;

int maxSpeed;

class Vehicle

numOfDoors 4
price 10000

maxSpeed 280

numOfDoors 4

v2

price 10000
maxSpeed 280

numOfDoors 4

v3

price 10000
maxSpeed 280

v1

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java

Constructors

 A constructor is a special kind of method that is designed

to initialize the instance variables for an object:

public ClassName(anyParameters){code}

 A constructor must have the same name as the class

 A constructor has no type returned, not even void

4-16

 VehicleSearch2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch2.java
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc

public and private Modifiers

 The modifier public means that there are no restrictions on
where an instance variable or method can be used

 The modifier private means that an instance variable or
method cannot be accessed by name outside of the class

4-17

 VehicleSearch4.java (MS-Word file)

 VehicleSearch3.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch4.java
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc

Include a No-Argument Constructor

 You should include a default, or no-argument constructor as part of
your program. Default constructors will be discussed later in full
details.

 If you do not include any constructors in your class, Java will
automatically create a default or no-argument constructor that takes
no arguments, performs no initializations, but allows the object
to be created

 If you include even one constructor (possibly non-default) in
your class, Java will not provide this default constructor

4-18

Local Variables

 A variable declared within a method definition is
called a local variable

 All variables declared in the main method are local
variables

 All method parameters are local variables

 If two methods each have a local variable of the
same name, they are still two entirely different
variables

4-19

Global Variables

 Some programming languages include another

kind of variable called a global variable

 The Java language does not have global variables

4-20

Blocks
 A block is another name for a compound statement, that

is, a set of Java statements enclosed in braces,{}

 A variable declared within a block is local to that block,
and cannot be used outside the block

 Once a variable has been declared within a block, its
name cannot be used for anything else within the same
method definition

4-21

Declaring Variables in a for Statement

 You can declare one or more variables within the

initialization portion of a for statement

 A variable so declared will be local to the for loop,

and cannot be used outside of the loop

 If you need to use such a variable outside of a loop,

then declare it outside the loop

4-22

 Statements15.java (MS-Word file)

 Statements14.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc

Parameters of a Primitive Type

 A method can accept no parameters, one parameter,
or few of them (parameter list)

 These parameter(s) are referred to as formal parameters

public void setVehicleInfo(int nd, double pr, int mxsp)

 When a method is invoked, the appropriate values
must be passed to the method in the form of
arguments, and must be in the right order

 These arguments are called actual parameters

c1.setVehicleInfo(4, 12500.99, 280);

4-23

Parameters of a Primitive Type
 The type of each argument must be compatible with the type of

the corresponding parameter. The following two statements use
the method correctly

c1.setVehicleInfo(4, 12500.99, 280);

int n = 5, m = 260;

double p = 19700.95;

c1.setVehicleInfo(n, p, m);

 NOTE: In both examples, the value of each argument (not the
variable name) is the one plugged into the corresponding
method parameter
 This method of plugging in arguments for formal parameters is known as

the call-by-value mechanism

4-24

 MethodParameters1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MethodParameters1.java
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc

Parameters of a Primitive Type

 If argument and parameter types do not match exactly,
Java will attempt to make an automatic type conversion

 A primitive argument can be automatically type cast from any
of the following types, to any of the types that appear to its
right:

 byteshortintlongfloatdouble

 char

4-25

Methods That Return a Boolean Value

 An invocation of a method that returns a value
of type boolean returns either true or
false

 Therefore, it is common practice to use an
invocation of such a method to control
statements and loops where a boolean
expression is expected

 i.e. within if-else statements, while loops,
etc.

4-26

Comparing Objects of the Same Class for

Equality

 You cannot use == to compare objects

4-27

 VehicleCompare1.java (MS-Word file)

 Instead use methods such as user-defined
equals, or toString to compare the objects

 VehicleCompare2.java (MS-Word file)

 VehicleCompare3.java (MS-Word file)

 VehicleCompare4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleCompare1.java
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc

Accessor and Mutator Methods

 Accessor methods allow the programmer to obtain the value of an
object's instance variables

 The data can be accessed but not changed

 The name of an accessor method typically starts with the
word get

 Mutator methods allow the programmer to change the value of an
object's instance variables in a controlled manner

 Incoming data is typically tested and/or filtered

 The name of a mutator method typically starts with the word
set

4-28

Encapsulation

4-29

A Class Has Access to Private Members of All

Objects of the Class

 Within the definition of a class, private members

of any object of the class can be accessed, not

just private members of the calling object

 For example, see the equals function in

VehicleCompare2.java (MS-Word file)

The function has access to the private date of the

passed object, vec

4-30

http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc

