
Comp 248

Introduction to Programming

Chapter 4 - Defining Classes
Part A

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2008-2016 Aiman Hanna

All rights reserved

Class Definitions

 We have already been using some of the predefined classes, i.e.
String and Scanner classes

 We can add/define our own classes to the language

 A class determines:
 1) Attributes, or Instance Variables: the types of data that an object can

contain,

 2) Methods: the actions it can perform

 Once a new class is defined, objects, or instances, can be created
from this class

4-2

Class Definitions

4-3

int x, y;

char ch;
Data declarations

Method declarations

The new Operator

 An object of a class is named or declared by a variable of the class
type:
 ClassName objectName;

 The new operator must then be used to create the object and
associate it with its variable name (however, some few exceptions do
exist):
 objectName = new ClassName();

 These can be combined as follows:
 ClassName objectName = new ClassName();

Example:

Car c1 = new Car(); // Car is the class name and

 // c1 is the object name

 // IMPORTANT NOTE: In fact,
 // c1 is a pointer/reference
 // to the object

4-4

Instance Variables and Methods

 Instance variables (attributes) can be defined as in the
following two examples
 Note the public modifier (for now):

 public int numberOfDoors;

 public double Price;

 In order to refer to a particular instance variable, preface
it with its object name as follows:
c1.price

c2.price

c1.numberOfDoors

c1 & c2 are just two objects from the class

4-5

 Method definitions are divided into two parts: a heading and a
method body:
 public void myMethod() // Heading

 {

 code to perform some action // Body

 and/or compute a value

 }

 Methods are invoked using the name of the calling object and
the method name as follows:
 objName.methodName();

Example:
C1.getNumberOfDoors();

 Invoking a method is equivalent to executing the method body

Instance Variables and Methods

4-6

File Names and Locations

 Reminder: a Java file must be given the same
name as the class it contains with an added
.java at the end

 For example, a class named Car must be in a file
named Car.java

 For now, your program and all the classes it uses
should be in the same directory or folder

4-7

More About Methods

 There are two kinds of methods:

 Methods that compute/perform an action then
return a value

 Methods that compute/perform an action then does
not return a value

 This type of method is called a void method; in other
words, it returns void

 Notice that in both cases, the function do
indeed perform an action

4-8

More About Methods

 A method that returns a value must specify the

type of that value in its heading:
 public typeReturned methodName(paramList)

Note: paramList is optional

Examples:

 public double getPrice();

 public int getNumOfDoors();

 public void setNumOfDoors(int nd); // nd is just

 // a name

4-9

main is a void Method

 A program in Java is just a class that has a main

method

 When you give a command to run a Java program, the

run-time system invokes the method main

 Note that main is a void method, as indicated by its

heading:
public static void main(String[] args)

4-10

return Statements

 The body of both types of methods contains a list of

declarations and statements enclosed in a pair of braces

 public <void or typeReturned> myMethod()

 {

 declarations Body

 statements

 }

4-11

return Statements

 The body of a method that returns a value must
also contain one or more return statements

 A return statement specifies the value returned
and ends the method invocation:

 return Expression;

 Expression can be any expression that evaluates
to something of the type returned listed in the
method heading

4-12

return Statements

 A void method need not contain a return
statement, unless there is a situation that
requires the method to end before all its code is
executed

 In this context, since it does not return a value, a
return statement is used without an
expression:

 return;

4-13

Method Definitions
 An invocation of a method that returns a value can be

used as an expression anyplace that a value of the
returned type can be used:
double pr;

pr = c1.getPrice();

 An invocation of a void method is simply a statement:
objectName.methodName();

Examples:

 c1.setPrice(20000);

 c1.showModel();

4-14

 VehicleSearch1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch1.java.doc

Example: The Vehicle Class

4-15

 See VehicleSearch1.java

v1, v2 & v3 upon creation

int numOfDoors;

double price;

int maxSpeed;

class Vehicle

numOfDoors 4
price 10000

maxSpeed 280

numOfDoors 4

v2

price 10000
maxSpeed 280

numOfDoors 4

v3

price 10000
maxSpeed 280

v1

http://aimanhanna.com/concordia/comp248/VehicleSearch1.java

Constructors

 A constructor is a special kind of method that is designed

to initialize the instance variables for an object:

public ClassName(anyParameters){code}

 A constructor must have the same name as the class

 A constructor has no type returned, not even void

4-16

 VehicleSearch2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch2.java
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch2.java.doc

public and private Modifiers

 The modifier public means that there are no restrictions on
where an instance variable or method can be used

 The modifier private means that an instance variable or
method cannot be accessed by name outside of the class

4-17

 VehicleSearch4.java (MS-Word file)

 VehicleSearch3.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleSearch4.java
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleSearch3.java.doc

Include a No-Argument Constructor

 You should include a default, or no-argument constructor as part of
your program. Default constructors will be discussed later in full
details.

 If you do not include any constructors in your class, Java will
automatically create a default or no-argument constructor that takes
no arguments, performs no initializations, but allows the object
to be created

 If you include even one constructor (possibly non-default) in
your class, Java will not provide this default constructor

4-18

Local Variables

 A variable declared within a method definition is
called a local variable

 All variables declared in the main method are local
variables

 All method parameters are local variables

 If two methods each have a local variable of the
same name, they are still two entirely different
variables

4-19

Global Variables

 Some programming languages include another

kind of variable called a global variable

 The Java language does not have global variables

4-20

Blocks
 A block is another name for a compound statement, that

is, a set of Java statements enclosed in braces,{}

 A variable declared within a block is local to that block,
and cannot be used outside the block

 Once a variable has been declared within a block, its
name cannot be used for anything else within the same
method definition

4-21

Declaring Variables in a for Statement

 You can declare one or more variables within the

initialization portion of a for statement

 A variable so declared will be local to the for loop,

and cannot be used outside of the loop

 If you need to use such a variable outside of a loop,

then declare it outside the loop

4-22

 Statements15.java (MS-Word file)

 Statements14.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements15.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc
http://aimanhanna.com/concordia/comp248/Statements14.java.doc

Parameters of a Primitive Type

 A method can accept no parameters, one parameter,
or few of them (parameter list)

 These parameter(s) are referred to as formal parameters

public void setVehicleInfo(int nd, double pr, int mxsp)

 When a method is invoked, the appropriate values
must be passed to the method in the form of
arguments, and must be in the right order

 These arguments are called actual parameters

c1.setVehicleInfo(4, 12500.99, 280);

4-23

Parameters of a Primitive Type
 The type of each argument must be compatible with the type of

the corresponding parameter. The following two statements use
the method correctly

c1.setVehicleInfo(4, 12500.99, 280);

int n = 5, m = 260;

double p = 19700.95;

c1.setVehicleInfo(n, p, m);

 NOTE: In both examples, the value of each argument (not the
variable name) is the one plugged into the corresponding
method parameter
 This method of plugging in arguments for formal parameters is known as

the call-by-value mechanism

4-24

 MethodParameters1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MethodParameters1.java
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc
http://aimanhanna.com/concordia/comp248/MethodParameters1.java.doc

Parameters of a Primitive Type

 If argument and parameter types do not match exactly,
Java will attempt to make an automatic type conversion

 A primitive argument can be automatically type cast from any
of the following types, to any of the types that appear to its
right:

 byteshortintlongfloatdouble

 char

4-25

Methods That Return a Boolean Value

 An invocation of a method that returns a value
of type boolean returns either true or
false

 Therefore, it is common practice to use an
invocation of such a method to control
statements and loops where a boolean
expression is expected

 i.e. within if-else statements, while loops,
etc.

4-26

Comparing Objects of the Same Class for

Equality

 You cannot use == to compare objects

4-27

 VehicleCompare1.java (MS-Word file)

 Instead use methods such as user-defined
equals, or toString to compare the objects

 VehicleCompare2.java (MS-Word file)

 VehicleCompare3.java (MS-Word file)

 VehicleCompare4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/VehicleCompare1.java
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare1.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare3.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare4.java.doc

Accessor and Mutator Methods

 Accessor methods allow the programmer to obtain the value of an
object's instance variables

 The data can be accessed but not changed

 The name of an accessor method typically starts with the
word get

 Mutator methods allow the programmer to change the value of an
object's instance variables in a controlled manner

 Incoming data is typically tested and/or filtered

 The name of a mutator method typically starts with the word
set

4-28

Encapsulation

4-29

A Class Has Access to Private Members of All

Objects of the Class

 Within the definition of a class, private members

of any object of the class can be accessed, not

just private members of the calling object

 For example, see the equals function in

VehicleCompare2.java (MS-Word file)

The function has access to the private date of the

passed object, vec

4-30

http://aimanhanna.com/concordia/comp248/VehicleCompare2.java
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc
http://aimanhanna.com/concordia/comp248/VehicleCompare2.java.doc

