
Comp 248

Introduction to Programming

Chapter 3 – Flow of Control

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007 Pearson Addison-Wesley

Copyright © 2008-2016 Aiman Hanna

All rights reserved

Flow of Control

 flow of control in Java refers to its branching and looping

 Several branching mechanisms: if-else, if, and
switch statements

 Three types of loops: while, do-while, and for
statements

 Most branching and looping statements are controlled
by Boolean expressions

 A Boolean expression evaluates to either true or
false

3-2

The if Statement

3-3

if (condition)

 statement;

if is a Java

reserved word

The condition must be a boolean expression.

It must evaluate to either true or false.

If the condition is true, the statement is executed.

If it is false, the statement is skipped.

The if Statement

3-4

Example:

 if (x > 10)

 System.out.println(“Hello”);

Compound Statements

 Compound Statement: If the statement under if is

made up of more than one statement, they must

be enclosed in curly braces ({ })

Example:
if (amount < balance)

{

 System.out.println(“Thank you. Withdrawal will take place”);

 balance = balance – amount;

}

3-5

 Statements2.java (MS-Word file)

 Statements1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements2.java
http://aimanhanna.com/concordia/comp248/Statements2.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements2.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements2.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements1.java
http://aimanhanna.com/concordia/comp248/Statements1.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements1.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements1.java.docdoc

if-else Statement

 An if-else statement chooses between two alternative
statements based on the value of a Boolean expression

if (Boolean_Expression)

 Yes_Statement

else

 No_Statement

Example:

 if (x > 10)

 System.out.println(“Hello”);

 else

 System.out.println(“Hi”);

3-6

Compound Statements

 Compound Statement: Same rule; multiple statements must be
enclosed in curly braces ({ })

Example:

if (amount < balance)

{
 System.out.println(“Thank you. Withdrawal will take place”);

 balance = balance – amount;

}

else {

 System.out.println(“Sorry. You do not have enough fund.”);

 System.out.println(“Transaction will be cancelled!.”);

}

3-7
 Statements3.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements3.java
http://aimanhanna.com/concordia/comp248/Statements3.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements3.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements3.java.docdoc

Nested Statements

 Statements within if-else or if statements can

themselves be another if-else or if statements

 For clarity, each level of a nested if-else or if should be

indented further than the previous level

3-8

 Statements4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements4.java
http://aimanhanna.com/concordia/comp248/Statements4.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements4.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements4.java.docdoc

Multiway if-else Statements

 The multiway if-else statement is simply a normal if-
else statement that nests another if-else statement at
every else branch

 The Boolean_Expressions are evaluated in order until one that

evaluates to true is found

 The final else is optional

3-9

 Statements5.java (MS-Word file)

 Statements6.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements5.java
http://aimanhanna.com/concordia/comp248/Statements5.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements5.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements5.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements6.java
http://aimanhanna.com/concordia/comp248/Statements6.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements6.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements6.java.docdoc

The switch Statement

3-10

 The general syntax of a switch statement is:
switch (expression)

{

 case value1 :

 statement-list1

 break;

 case value2 :

 statement-list2

 break;

 case value3 :

 statement-list3

 break;

 case ...

 default:

 default-statement

}

switch

case

and

Break

are

reserved

words
If expression

matches value2,

control jumps

to here

Optional

Can be: char, byte,

 short, int, or String

Note: can also be an

enumerated type or other

special classes that will be

discussed later

The switch Statement

3-11

 Statements7.java (MS-Word file)

 Statements7B.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements7.java
http://aimanhanna.com/concordia/comp248/Statements7.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements7.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements7.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements7B.java
http://aimanhanna.com/concordia/comp248/Statements7B.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements7B.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements7B.java.docdoc

The Conditional Operator

3-12

 The conditional operator is a notational variant on certain forms of the if-
else statement

 Also called the ternary operator or arithmetic if

 The following examples are equivalent:

if (n1 > n2) max = n1;

else max = n2;

 vs.

max = (n1 > n2) ? n1 : n2;

 ConditionalOperator1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/ConditionalOperator1.java
http://aimanhanna.com/concordia/comp248/ConditionalOperator1.java.docdoc
http://aimanhanna.com/concordia/comp248/ConditionalOperator1.java.docdoc
http://aimanhanna.com/concordia/comp248/ConditionalOperator1.java.docdoc

Java Comparison Operators

3-13

Pitfall: Using == with Strings

 The equality comparison operator (==) can correctly test two
values of a primitive type

 In order to test two strings to see if they have equal values, use
the method equals, or equalsIgnoreCase

E.g.:

if (s1.equals(s2))

if (s1.equalsIgnoreCase(s2))

3-14

Lexicographic and Alphabetical Order

 Lexicographic ordering is the same as ASCII ordering, and includes
letters, numbers, and other characters

 All uppercase letters are in alphabetic order, and all lowercase
letters are in alphabetic order, but all uppercase letters come before
lowercase letters

 If s1 and s2 are two variables of type String that have been
given String values, then s1.compareTo(s2) returns a
negative number if s1 comes before s2 in lexicographic ordering,
returns zero if the two strings are equal, and returns a positive
number if s2 comes before s1

 When performing an alphabetic comparison of strings (rather than a
lexicographic comparison) that consist of a mix of lowercase and
uppercase letters, use the compareToIgnoreCase method instead

3-15

Building Boolean Expressions

 ! Logical NOT

 && Logical AND

 || Logical OR

3-16

x !x

true false

false true

Truth Tables

3-17

x y x || y

true true true

true false true

false true true

false false false

x y x && y

true true true

true false false

false true false

false false false

Evaluating Boolean Expressions

 Boolean expressions can exist independently as well

boolean madeIt = (time < limit) && (limit < max);

3-18

Short-Circuit and Complete Evaluation

 Java can take a shortcut when the evaluation of the first part of a
Boolean expression produces a result that evaluation of the
second part cannot change

 This is called short-circuit evaluation or lazy evaluation

Example:

 int x = 10, y = 15;

 if (x < 4 && y == 15) // y == 15 will NOT be evaluated

 {

 …..

 }

3-19

Short-Circuit and Complete Evaluation

 There are times when using short-circuit evaluation can prevent
a runtime error
 In the following example, if the number of kids is equal to zero, then

the second subexpression will not be evaluated, thus preventing a divide by
zero error

 Note that reversing the order of the subexpressions will not prevent this

 if ((kids !=0) && ((toys/kids) >=2)) . . .

 Sometimes it is preferable to always evaluate both expressions,
i.e., request complete evaluation
 In this case, use the & and | operators instead of && and ||

3-20

Precedence and Associativity

Rules
 Boolean and arithmetic expressions need not be fully

parenthesized

 If some or all of the parentheses are omitted, Java will follow
precedence and associativity rules

3-21

Precedence

and

Associativity

Rules

3-22

Loops

 Java has three types of loop statements:

 the while statements

 the do-while statements

 the for statement

3-23

while statement

3-24

 The while statement has the following syntax:

while (condition)

 statement;
while is a

reserved word

If the condition is true, the statement is executed.

Then the condition is evaluated again.

The statement is executed repeatedly until

the condition becomes false.

while Syntax

. .
 .

3-25

while (Boolean_Expression)

 Statement

 Or, in the case where there are multiple statements

while (Boolean_Expression)

{

 Statement_1

 Statement_2

 …

}

 Statements8.java (MS-Word file)

 Statements9.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements8.java
http://aimanhanna.com/concordia/comp248/Statements8.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements8.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements8.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements9.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements9.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements9.java.docdoc
http://aimanhanna.com/concordia/comp248/Statements9.java.docdoc

do-while Statement

3-26

 The do-while statement has the following syntax:

do

{

 statement;

}

while (condition)

do and

while are

reserved

words

The statement is executed once initially,

and then the condition is evaluated

The statement is executed repeatedly

until the condition becomes false

 Statements10.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements10.java
http://aimanhanna.com/concordia/comp248/Statements10.java
http://aimanhanna.com/concordia/comp248/Statements10.java
http://aimanhanna.com/concordia/comp248/Statements10.java

The for Statement

3-27

 The for statement has the following syntax:

for (initialization ; condition ; increment)

 statement;

Reserved

word

The initialization

is executed once

before the loop begins

The statement is

executed until the
condition becomes false

The increment portion is executed at the end of each iteration

The condition-statement-increment cycle is executed repeatedly

for Statement Syntax and Alternate

Semantics

3-28

Examples:

for (i=0; i <= 10; i++)

 System.out.println(“Hello”);

Or, in the case where there are multiple statements

for (num=100; num > 0; num = num - 20)

{

 System.out.println(“looping”);

 System.out.println(“num is :” + num);

}

 Statements12.java (MS-Word file)

 Statements11.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements12.java
http://aimanhanna.com/concordia/comp248/Statements12.java
http://aimanhanna.com/concordia/comp248/Statements12.java
http://aimanhanna.com/concordia/comp248/Statements12.java
http://aimanhanna.com/concordia/comp248/Statements11.java
http://aimanhanna.com/concordia/comp248/Statements11.java
http://aimanhanna.com/concordia/comp248/Statements11.java
http://aimanhanna.com/concordia/comp248/Statements11.java

Nested Loops

 Loops can be nested, just like other Java structures
 When nested, the inner loop iterates from beginning to end for each

single iteration of the outer loop

3-29

 Statements13.java (MS-Word file)

 Notice that variables declared inside for statement are local to
this statement; i.e. they cannot be see outside of the statement

 Statements14.java (MS-Word file)

 Statements15.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements13.java
http://aimanhanna.com/concordia/comp248/Statements13.java
http://aimanhanna.com/concordia/comp248/Statements13.java
http://aimanhanna.com/concordia/comp248/Statements13.java
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements14.java
http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java
http://aimanhanna.com/concordia/comp248/Statements15.java

The break and continue Statements

 The break statement consists of the keyword break
followed by a semicolon
 When executed, the break statement ends the nearest enclosing

switch or loop statement

 The continue statement consists of the keyword
continue followed by a semicolon
 When executed, the continue statement ends the current loop

body iteration of the nearest enclosing loop statement

 Note that in a for loop, the continue statement transfers
control to the update expression

 When loop statements are nested, remember that any
break or continue statement applies to the innermost,
containing loop statement

3-30

 Statements16.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Statements16.java
http://aimanhanna.com/concordia/comp248/Statements16.java
http://aimanhanna.com/concordia/comp248/Statements16.java
http://aimanhanna.com/concordia/comp248/Statements16.java

The Labeled break Statement
 There is a type of break statement that, when used in

nested loops, can end any containing loop, not just the
innermost loop

 If an enclosing loop statement is labeled with an Identifier,
then the following version of the break statement will exit
the labeled loop, even if it is not the innermost enclosing
loop:
break someIdentifier;

 To label a loop, simply precede it with an Identifier and a
colon:
someIdentifier:

3-31

The exit Statement

 A break statement will end a loop or switch
statement, but will not end the program

 The exit statement will immediately end the program
as soon as it is invoked:

System.exit(0);

 The exit statement takes one integer argument

 By tradition, a zero argument is used to indicate a normal
ending of the program

3-32

General Debugging Techniques

 Examine the system as a whole – don’t assume the bug

occurs in one particular place

 Try different test cases and check the input values

 Comment out blocks of code to narrow down the

offending code

 Check common pitfalls

 Take a break and come back later

 DO NOT make random changes just hoping that the

change will fix the problem!

3-33

Debugging Example (1 of 9)

 The following code is supposed to present a

menu and get user input until either ‘a’ or ‘b’ is

entered.

3-34

String s = "";

char c = ' ';

Scanner keyboard = new Scanner(System.in);

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s.toLowerCase();

 c = s.substring(0,1);

}

while ((c != 'a') || (c != 'b'));

Debugging Example (2 of 9)

 Using the “random change” debugging

technique we might try to change the data type

of c to String, to make the types match

 This results in more errors since the rest of the

code treats c like a char

3-35

Result: Syntax error:

 c = s.substring(0,1); : incompatible types
 found: java.lang.String

 required: char

Debugging Example (3 of 9)

 First problem: substring returns a String, use

charAt to get the first character:

3-36

String s = "";

char c = ' ';

Scanner keyboard = new Scanner(System.in);

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') || (c != 'b'));

Now the program compiles, but it is stuck in an infinite loop. Employ tracing:

Debugging Example (4 of 9)

3-37

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 System.out.println("String s = " + s);

 s.toLowerCase();

 System.out.println("Lowercase s = " + s);

 c = s.charAt(0);

 System.out.println("c = " + c);

}

while ((c != 'a') || (c != 'b'));

Sample output:

Enter 'A' for option A or 'B' for option B.

A

String s = A

Lowercase s = A

c = A

Enter 'A' for option A or 'B' for option B.

From tracing we can see that the string is never changed to lowercase.
Reassign the lowercase string back to s.

Debugging Example (5 of 9)

 The following code is supposed to present a

menu and get user input until either ‘a’ or ‘b’ is

entered.

3-38

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') || (c != 'b'));

However, it’s still stuck in an infinite loop. What to try next?

Debugging Example (6 of 9)

 Could try the following “patch”

3-39

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 if (c == 'a')

 break;

 if (c == 'b')

 break;

}

while ((c != 'a') || (c != 'b'));

This works, but it is ugly! Considered a coding atrocity, it doesn’t fix the

underlying problem. The boolean condition after the while loop has also

become meaningless. Try more tracing:

Debugging Example (7 of 9)

3-40

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 System.out.println("c != 'a' is " + (c != 'a'));

 System.out.println("c != 'b' is " + (c != 'b'));

 System.out.println("(c != 'a') || (c != 'b')) is "

 + ((c != 'a') || (c != 'b')));

}

while ((c != 'a') || (c != 'b'));

Sample output:
Enter 'A' for option A or 'B' for option B.

A

c != 'a' is false

c != 'b' is true

(c != 'a') || (c != 'b')) is true

From the trace we can see that the loop’s boolean expression is true because c

cannot be not equal to ‘a’ and not equal to ‘b’ at the same time.

Debugging Example (8 of 9)

 Fix: We use && instead of ||

3-41

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') && (c != 'b'));

Debugging Example (9 of 9)

 Alternative Solution: Declare a boolean variable to

control the do-while loop. This makes it clear when the

loop exits if we pick a meaningful variable name.

3-42

boolean invalidKey;

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 if (c == 'a')

 invalidKey = false;

 else if (c == 'b')

 invalidKey = false;

 else

 invalidKey = true;

}

while (invalidKey);

Assertion Checks

 An assertion is a sentence that says (asserts) something about the
state of a program
 An assertion must be either true or false, and should be true if a program

is working properly

 Assertions can be placed in a program as comments

 Java has a statement that can check if an assertion is true
assert Boolean_Expression;

 If assertion checking is turned on and the Boolean_Expression
evaluates to false, the program ends, and outputs an assertion failed error
message

 Otherwise, the program finishes execution normally

3-43

Assertion Checks

 A program or other class containing assertions is
compiled in the usual way

 After compilation, a program can run with assertion
checking turned on or turned off
 Normally a program runs with assertion checking turned off

 In order to run a program with assertion checking
turned on, use the following command (using the actual
ProgramName):
 java –enableassertions ProgramName

3-44

Preventive Coding

 Incremental Development

 Write a little bit of code at a time and test it before

moving on

 Code Review

 Have others look at your code

 Pair Programming

 Programming in a team, one typing while the other

watches, and periodically switch roles

3-45

