
Comp 248

Introduction to Programming

Chapter 1 - Getting Started

Dr. Aiman Hanna
Department of Computer Science & Software Engineering

Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of Absolute Java 3rd Edition by Savitch;

which has originally been prepared by Rose Williams of Binghamton University. Absolute Java is published by

Pearson Education / Addison-Wesley.

 Copyright © 2007-2016 Pearson Addison-Wesley

Copyright © 2008-2016 Aiman Hanna

All rights reserved

Origins of the Java Language

 Created by Sun Microsystems team led by James

Gosling (1991)

 Originally designed for programming home

appliances

 Difficult task because appliances are controlled by a

wide variety of computer processors

 Team developed a two-step translation process to

simplify the task of compiler writing for each class of

appliances

1-2

Origins of the Java Language

 Java evolved to a general purpose programming

language, that is very suitable for many Internet

applications

 The syntax of expressions and assignments is

similar to that of other high-level languages,

such as C++

1-3

Origins of the Java Language

 Significance of Java translation process
 Writing a compiler (translation program) for each type of

appliance processor would have been very costly

 The same rule applies to writing compilers: different
compilers are needed for different systems
(processor/Operating System)

Example:

1-4

Origins of the Java Language

 Instead, Java designers developed intermediate language that

is the same for all types of processors: Java byte-code

 One compiler is designed to translate Java Source code to

byte code.

 The byte-code is viewed as suitable to every machine (actually

it is not; it is only suitable to a fictitious, or imaginary

machine; which we refer to as Virtual Machine)

1-5

Origins of the Java Language

 The byte-code can be viewed as suitable to every

machine since it is easily possible to write a small

program (interpreter) to translate byte-code into the

proper machine code for each processor

1-6

Objects and Methods

 Java is an object-oriented programming (OOP)

language

 Programming methodology that views a program as

consisting of objects that interact with one another by

means of actions (called methods; sometimes referred

to as functions)

 All programming constructs in Java, including

methods, are part of a class

 Objects of the same kind are said to have the same

type or be in the same class
1-7

Java Application Programs

 There are two types of Java programs: applications and
applets

 A Java application program or "regular" Java program is a
class with a method named main

 When a Java application program is run, the run-time system
automatically invokes the method named main

 All Java application programs start with the main method

1-8

Applets

 A Java applet (little Java application) is a Java program that
is meant to be run from a Web browser

 Can be run from a location on the Internet

 Can also be run with an applet viewer program for debugging

 Applets always use a windowing interface

 In contrast, application programs may use a windowing
interface or console (i.e., text) I/O

1-9

Java Program Structure

1-10

public class MyProgram

{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

Java Program Structure

1-11

public class MyProgram

{

}

public static void main (String[] args)

{

}

// comments about the class

// comments about the method

method header
method body

A Sample Java Application

Program

1-12

 Greetings.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Greetings.java
http://aimanhanna.com/concordia/comp248/Greetings.java.doc
http://aimanhanna.com/concordia/comp248/Greetings.java.doc
http://aimanhanna.com/concordia/comp248/Greetings.java.doc

System.out.println

 Java programs work by having things called

objects perform actions

 System.out: an object used for sending output

to the screen

 The actions performed by an object are called

methods

 println: the method or action that the

System.out object performs

1-13

System.out.println

 Invoking or calling a method: When an object performs

an action using a method

 Method invocation syntax (in order): an object, a dot

(period), the method name, and a pair of parentheses

 Arguments: Zero or more pieces of information needed by

the method that are placed inside the parentheses

Examples:

System.out.println("This is an argument");

System.out.println();

1-14

Variable declarations

 Variable declarations in Java are similar to those
in other programming languages

 Simply give the type of the variable followed by its
name and a semicolon

Examples:

 int numOfDoors;

 double price;

1-15

Using = and +

 In Java, the equal sign (=) is used as the

assignment operator

 The variable on the left side of the assignment

operator is assigned the value of the expression on the

right side of the assignment operator

numOfDoors = 4;

1-16

Using = and +

 In Java, the plus sign (+) can be used to denote

addition or concatenation

Examples:

 int total;

 total = 2 + 5;

Using +, two strings can also be connected together

System.out.println("2 plus 5 is " + total);

1-17

 MathOperations1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MathOperations1.java
http://aimanhanna.com/concordia/comp248/MathOperations1.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations1.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations1.java.doc

Compiling a Java Program or

Class
 Each class definition must be in a file whose name is

the same as the class name followed by .java
 For example, the class FirstProgram must be in a file

named FirstProgram.java

 Each class is compiled with the command javac
followed by the name of the file in which the class
resides

javac FirstProgram.java

 The result is a byte-code program whose filename is the same
as the class name followed by .class

FirstProgram.class

1-18

Running a Java Program

 A Java program can be given the run command (java)
after all its classes have been compiled

 Only run the class that contains the main method (the

system will automatically load and run the other classes, if
any)

 The main method begins with the line:
public static void main(String[] args)

 Follow the run command by the name of the class only (no
.java or .class extension)

java FirstProgram

1-19

Syntax and Semantics

 Syntax: The arrangement of words and

punctuations that are legal in a language, the

grammar rules of a language

 Semantics: The meaning of things written while

following the syntax rules of a language

1-20

Tip: Error Messages

 Bug: A mistake in a program

 The process of eliminating bugs is called debugging

 Syntax error: A grammatical mistake in a
program

 The compiler can detect these errors, and will output
an error message saying what it thinks the error is,
and where it thinks the error is

1-21

Tip: Error Messages

 Run-time error: An error that is not detected until a

program is run

 The compiler cannot detect these errors: an error message is

not generated after compilation, but after execution

 Logic error: A mistake in the underlying algorithm for a

program

 The compiler cannot detect these errors, and no error message is generated

after compilation or execution, but the program does not do what it is

supposed to do

1-22

Identifiers

 Identifier: The name of a variable or other item (class,
method, object, etc.) defined in a program

 The name of a Java identifier may include letters, digits, or
the underscore symbol, and must not start with a digit

 Java identifiers can theoretically be of any length

 Java is a case-sensitive language: Rate, rate, and RATE
are the names of three different variables

1-23

Identifiers

 Which of the following is a valid identifier?
 IntRate (A: Valid, B: Not Valid)

Five_speed (A: Valid, B: Not Valid)

5_speed (A: Valid, B: Not Valid)

_5 speed (A: Valid, B: Not Valid)

MercedesSL500 (A: Valid, B: Not Valid)

Time.and.space (A: Valid, B: Not Valid)

___3 (A: Valid, B: Not Valid)

Less<5 (A: Valid, B: Not Valid)

1-24

Identifiers

 Keywords and Reserved words: Identifiers that have a
predefined meaning in Java

 Cannot be used to name anything else

public class void static

 Predefined identifiers: Identifiers that are defined in
libraries required by the Java language standard

 They can be redefined, however this could be confusing and
possibly dangerous since this would change their standard
meaning; so do not do that even if it is allowed hy the
language!

System String println

1-25

Naming Conventions

 Start the names of variables, methods, and objects with
a lowercase letter, indicate "word" boundaries with an
uppercase letter, and restrict the remaining characters to
digits and lowercase letters

topSpeed bankRate1 timeOfArrival

 Start the names of classes with an uppercase letter and,
otherwise, adhere to the rules above

FirstProgram MyClass String

1-26

 Note that this is just one possible convention

Variable Declarations

 Every variable in a Java program must be declared before it is used
 A variable declaration tells the compiler what kind of data (type) will be

stored in the variable

 The type of the variable is followed by one or more variable names
separated by commas, and terminated with a semicolon

Examples:

int numberOfBeans;

double distance, price, totalWeight;

 Variables are typically declared just before they are used or at the start of
a block (indicated by an opening brace {)

 Basic types in Java are called primitive types

1-27

Primitive Types

1-28

Assignment Statements With Primitive Types

 In Java, the assignment statement is used to
change the value of a variable
 The equal sign (=) is used as the assignment operator

 An assignment statement consists of a variable on the
left side of the operator, and an expression on the right
side of the operator

Variable = Expression;

 An expression consists of a variable, number, or mix of
variables, numbers, operators, and/or method
invocations

temperature = 98.6;

count = numberOfBeans;

1-29

Assignment Statements With Primitive Types

 When an assignment statement is executed, the expression is
first evaluated, and then the variable on the left-hand side of
the equal sign is set equal to the value of the expression

distance = rate * time;

 Note that a variable can occur on both sides of the
assignment operator

count = count + 2;

 The assignment operator is automatically executed from
right-to-left, so assignment statements can be chained

number2 = number1 = 3;

1-30

 MathOperations2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MathOperations2.java
http://aimanhanna.com/concordia/comp248/MathOperations2.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations2.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations2.java.doc

Tip: Initialize Variables

 A variable that has been declared but that has not yet

been given a value by some means is said to be

uninitialized

 In certain cases, such as local variables inside a method,

the compiler will fail if an uninitialized variable is used

(to read from)

 In other cases an uninitialized variable is given a

default value

 It is best not to rely on this

 Explicitly initialized variables have the added benefit of

improving program clarity

1-31

Tip: Initialize Variables

 The declaration of a variable can be combined with its
initialization via an assignment statement

int count = 0;

double distance = 55 * .5;

char grade = 'A';

double total = Price + taxes;

 Note that some variables can be initialized and others can
remain un-initialized in the same declaration

int initialCount = 50, finalCount;

1-32

 Initialization1.java (MS-Word file)

 Initialization2.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Initialization1.java
http://aimanhanna.com/concordia/comp248/Initialization1.java.doc
http://aimanhanna.com/concordia/comp248/Initialization1.java.doc
http://aimanhanna.com/concordia/comp248/Initialization1.java.doc
http://aimanhanna.com/concordia/comp248/Initialization2.java
http://aimanhanna.com/concordia/comp248/Initialization2.java.doc
http://aimanhanna.com/concordia/comp248/Initialization2.java.doc
http://aimanhanna.com/concordia/comp248/Initialization2.java.doc

Shorthand Assignment

Statements
 Shorthand assignment notation combines the assignment operator

(=) and an arithmetic operator

 It is used to change the value of a variable by adding, subtracting,
multiplying, or dividing by a specified value

 The general form is
Variable Op= Expression

which is equivalent to
Variable = Variable Op (Expression)

 The Expression can be another variable, a constant, or a more
complicated expression

 Some examples of what Op can be are +, -, *, /, or %

1-33

Shorthand Assignment Statements

Example: Equivalent To:

count += 2; count = count + 2;

sum -= discount; sum = sum – discount;

bonus *= 2; bonus = bonus * 2;

time /=

rushFactor;

time =

time / rushFactor;

change %= 100; change = change % 100;

amount *=

count1 + count2;

amount = amount *

(count1 + count2);

1-34

Assignment Compatibility

 In general, the value of one type cannot be stored in a
variable of another type

int intVariable = 2.99; //Illegal

 The above example results in a type mismatch because a
double value cannot be stored in an int variable

 However, there are exceptions to this

double doubleVariable = 2;

 For example, an int value can be stored in a double type

1-35

Assignment Compatibility

 More generally, a value of any type in the following list can be
assigned to a variable of any type that appears to the right of it
byteshortintlongfloatdouble

char

 Note that as your move down the list from left to right, the range of
allowed values for the types becomes larger

 An explicit type cast is required to assign a value of one type to a
variable whose type appears to the left of it on the above list
(e.g., double to int)

 Note that in Java an int cannot be assigned to a variable of
type boolean, nor can a boolean be assigned to a variable
of type int

1-36

 MathOperations3.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MathOperations3.java
http://aimanhanna.com/concordia/comp248/MathOperations3.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations3.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations3.java.doc

Constants

 Constant (or literal): An item in Java which has one
specific value that cannot change

 Constants of an integer type may not be written with a

decimal point (e.g. 10, not 10.0)

 Constants of a floating-point type can be written in ordinary
decimal fraction form (e.g., 367000.0 or 0.000589)

 Constant of a floating-point type can also be written in
scientific (or floating-point) notation (e.g., 3.67e5 or 5.89e-4)
 Note that the number before the e may contain a decimal point, but

the number after the e may not

1-37

Constants

 Constants of type char are expressed by placing a
single character in single quotes (e.g., 'Z')

 Constants for strings of characters are enclosed by
double quotes (e.g., "Welcome to Java")

 There are only two boolean type constants, true
and false
 Note that they must be spelled with all lowercase letters

1-38

Naming Constants

 Instead of using "anonymous" numbers in a program, always
declare them as named constants, and use their name instead

public static final int INCHES_PER_FOOT = 12;

public static final double RATE = 0.14;

 This prevents a value from being changed inadvertently. It alsohas the
added advantage that when a value must be modified, it need only be
changed in one place

 Note the naming convention for constants: Use all uppercase letters, and
designate word boundaries with an underscore character

1-39
Copyright © 2007 Pearson Addison-Wesley. Copyright © 2007 Aiman Hanna. All rights reserved.

 MathOperations5.java (MS-Word file)

 MathOperations4.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MathOperations5.java
http://aimanhanna.com/concordia/comp248/MathOperations5.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations5.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations5.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations4.java
http://aimanhanna.com/concordia/comp248/MathOperations4.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations4.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations4.java.doc

Arithmetic Operators and Expressions

 As in most languages, expressions can be formed
in Java using variables, constants, and arithmetic
operators

 These operators are + (addition), - (subtraction), *
(multiplication), / (division), and % (modulo,
remainder)

 An expression can be used anyplace it is legal to use
a value of the type produced by the expression

1-40
Copyright © 2007 Pearson Addison-Wesley. Copyright © 2007 Aiman Hanna. All rights reserved.

 If an arithmetic operator is combined with two int operands,
then the resulting type is int

 If an arithmetic operator is combined with one or two double
operands, then the resulting type is double

 If different types are combined in an expression, then the
resulting type is the right-most type on the following list that is
found within the expression
byteshortintlongfloatdouble

Char

 Exception: If the type produced should be byte or short (according
to the rules above), then the type produced will actually be an int. In
other words, an expression never evaluates to the types byte or short

Arithmetic Operators and Expressions

1-41

Increment & Decrement Operators

 The increment operator (++) adds one to the value

of a variable

 If n is equal to 2, then n++ or ++n will change the

value of n to 3

 The decrement operator (--) subtracts one from

the value of a variable

 If n is equal to 4, then n-- or --n will change the

value of n to 3

1-42

 When either operator precedes its variable, and is part of an
expression, then the expression is evaluated using the changed
value of the variable
 If n is equal to 6, then 2*(++n) evaluates to 14

 When either operator follows its variable, and is part of an
expression, then the expression is evaluated using the original
value of the variable, and only then is the variable value changed
 If n is equal to 6, then 2*(n++) evaluates to 12

 In both of the above cases, the value of n will finally be changed
to 7

1-43

Increment & Decrement Operators

Parentheses and Precedence

Rules
 An expression can be fully parenthesized in order to

specify exactly what sub-expressions are combined with
each operator

 If some or all of the parentheses in an expression are
omitted, Java will follow precedence rules to determine, in
effect, where to place them

 However, it's best (and sometimes necessary) to include them

1-44

Precedence Rules

1-45

Precedence and Associativity

Rules
 When the order of two adjacent operations must be

determined, the operation of higher precedence (and its
apparent arguments) is grouped before the operation of
lower precedence

base + rate * hours is evaluated as

base + (rate * hours)

 When two operations have equal precedence, the order
of operations is determined by associativity rules

1-46

Precedence and Associativity

Rules
 Unary operators of equal precedence are grouped right-to-left

+-+rate is evaluated as +(-(+rate))

 Binary operators of equal precedence are grouped left-to-

right

base + rate + hours is evaluated as

(base + rate) + hours

 Exception: A string of assignment operators is grouped

right-to-left

n1 = n2 = n3; is evaluated as n1 = (n2 = n3);

1-47

Pitfall: Round-Off Errors in Floating-Point

Numbers

 Floating point numbers are only approximate quantities

 Mathematically, the floating-point number 1.0/3.0 is equal to

0.3333333 . . .

 A computer has a finite amount of storage space

 It may store 1.0/3.0 as something like 0.3333333333, which is slightly

smaller than one-third

 Computers actually store numbers in binary notation, but the

consequences are the same: floating-point numbers may lose

accuracy

1-48

Integer and Floating-Point

Division
 When one or both operands are a floating-point type, division

results in a floating-point type
15.0/2 evaluates to 7.5

 When both operands are integer types, division results in an
integer type
 Any fractional part is discarded

 The number is not rounded

15/2 evaluates to 7

 Be careful to make at least one of the operands a floating-point
type if the fractional portion is needed

1-49

The % (Modula) Operator

 The % operator is used with operands of type int to
recover the information lost after performing integer
division

15/2 evaluates to the quotient 7

15%2 evaluates to the remainder 1

16%4 evaluates to the remainder 0

 The % operator can be used to count by 2's, 3's, or any
other number

 To count by twos, perform the operation number % 2, and
when the result is 0, number is even

1-50

Type Casting

 A type cast takes a value of one type and produces a value of
another type with an "equivalent" value

 If n and m are integers to be divided, and the fractional portion of the

result must be preserved, at least one of the two must be type cast to a
floating-point type before the division operation is performed

double ans = n / (double)m;

 Note that the desired type is placed inside parentheses immediately in
front of the variable to be cast

 Note also that the type and value of the variable to be cast does not
change

1-51

 MathOperations6.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/MathOperations6.java
http://aimanhanna.com/concordia/comp248/MathOperations6.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations6.java.doc
http://aimanhanna.com/concordia/comp248/MathOperations6.java.doc

More Details About Type Casting

 When type casting from a floating-point to an integer type, the
number is truncated, not rounded
 (int)2.9 evaluates to 2, not 3

 When the value of an integer type is assigned to a variable of a
floating-point type, Java performs an automatic type cast called a
type coercion

double d = 5;

 In contrast, it is illegal to place a double value into an int
variable without an explicit type cast

int i = 5.5; // Illegal

int i = (int)5.5 // Correct

1-52

Escape Sequences

 A backslash (\) immediately preceding a

character (i.e., without any space) denotes an

escape sequence or an escape character

 The character following the backslash does not have

its usual meaning

 Although it is formed using two symbols, it is

regarded as a single character

1-53

Escape Sequences

1-54

Comments

 A line comment begins with the symbols //, and causes
the compiler to ignore the remainder of the line
 This type of comment is used for the code writer or for a

programmer who modifies the code

 A block comment begins with the symbol pair /*, and
ends with the symbol pair */
 The compiler ignores anything in between

 This type of comment can span several lines

 This type of comment provides documentation for the users
of the program

1-55

Comments & Named Constant

1-56

The Class String

 There is no primitive type for strings in Java

 The class String is a predefined class in Java that is used to
store and process strings

 Objects of type String are made up of strings of characters
that are written within double quotes
 Any quoted string is a constant of type String

"Live long and prosper."

 A variable of type String can be given the value of a String
object
String blessing = "Live long and prosper.";

1-57

Concatenation of Strings

 Concatenation: Using the + operator on two strings in order to
connect them to form one longer string
 If greeting is equal to "Hello ", and javaClass is equal to
"class", then greeting + javaClass is equal to "Hello
class"

 Any number of strings can be concatenated together

 When a string is combined with almost any other type of item,
the result is a string
 "The answer is " + 42 evaluates to

 "The answer is 42"

1-58

Classes, Objects, and Methods

 A class is the name for a type whose values are objects

 Objects are entities that store data and take actions

 Objects of the String class store data consisting of strings
of characters

 The actions that an object can take are called methods

 Methods can return a value of a single type and/or perform
an action

 All objects within a class have the same methods, but each
can have different data values

1-59

Classes, Objects, and Methods

 Invoking or calling a method: a method is called into
action by writing the name of the calling object,
followed by a dot, followed by the method name,
followed by parentheses

 The parentheses contain the information (if any) needed by
the method

 This information is called an argument (or arguments)

1-60

String Methods

 The String class contains many useful methods for string-
processing applications

 A String method is called by writing a String object, a dot, the

name of the method, and a pair of parentheses to enclose any arguments

 If a String method returns a value, then it can be placed anywhere that
a value of its type can be used

String greeting = "Hello";

int count = greeting.length();

System.out.println("Length is " +
greeting.length());

 Always count from zero when referring to the position or index of a
character in a string

1-61

Some Methods in the Class String
(Part 1 of 8)

1-62

Some Methods in the Class String
(Part 2 of 8)

1-63

Some Methods in the Class String
(Part 3 of 8)

1-64

Some Methods in the Class String
(Part 4 of 8)

1-65

Some Methods in the Class String
(Part 5 of 8)

1-66

Some Methods in the Class String
(Part 6 of 8)

1-67

Some Methods in the Class String
(Part 7 of 8)

1-68

Some Methods in the Class String
(Part 8 of 8)

1-69

 Strings1.java (MS-Word file)

http://aimanhanna.com/concordia/comp248/Strings1.java
http://aimanhanna.com/concordia/comp248/Strings1.java.doc
http://aimanhanna.com/concordia/comp248/Strings1.java.doc
http://aimanhanna.com/concordia/comp248/Strings1.java.doc

String Indexes

1-70

String Processing

 A String object in Java is considered to be immutable, i.e., the
characters it contains cannot be changed

 There is another class in Java called StringBuffer that has
methods for editing its string objects

 However, it is possible to change the value of a String
variable by using an assignment statement

String name = "Soprano";

name = "Anthony " + name;

1-71

Character Sets

 ASCII: A character set used by many programming languages
that contains all the characters normally used on an English-
language keyboard, plus a few special characters
 Each character is represented by a particular number

 Unicode: A character set used by the Java language that includes
all the ASCII characters plus many of the characters used in
languages with a different alphabet from English

1-72

Program Documentation

 Java comes with a program called javadoc that
will automatically extract documentation from
block comments in the classes you define
 As long as their opening has an extra asterisk (/**)

 Ultimately, a well written program is self-
documenting
 Its structure is made clear by the choice of identifier

names and the indenting pattern

 When one structure is nested inside another, the inside
structure is indented one more level

1-73

