Visual Basic 6 - Class Notes
© 1993 - 2005 - Aiman Hanna

IMPORTANT NOTE:

These notes are not a replacement to your textbook. The notes are not meant to be either comprehensive or complete; rather they just provide a very brief introduction to some of the basic topics of the course.
The Dim Statement (Declares a variable)

Dim VariableName As Type

What is a variable?

A memory area that contains a value that is changeable.

What is a type?

Specifies the type of data that can be assigned to a variable.

VariableName:

· Just a name of the variable
· It must be unique within its scope. It should be descriptive
· The name can contain alpha characters (A-Z, a-z), digits (0-9) and underscore (_)
· The name must begin with an alpha character
· The name must be limited to 255 characters
· The name can not be the same as a reserved word
Examples:

 Which one of the following are valid variable names, which ones are not?

too-high

2high

too_high

too_high_

HIGH

Too high

Dim

x

as

Some of the Data Types

	Type
	Size in bytes
	Range

	Byte
	1
	0 - 255

	Boolean
	2
	True or False

	Integer
	2
	-32,768 – 32,767

	Long (long integer)
	4
	-2,147,438,648 –

-2,147,438,647

	Single (single-precision floating-point)
	4
	Positive values:

1.401298E-45 –

3.402823E38

Negative values:

-3.402823E38 –

-1.401298E-45

	Currency
	8
	-922,337,203,685,447.5807 –

922,337,203,085,447.5808

	Double (double-precision floating-point)
	8
	+/- 5E-324 –

1.8E308

Examples of Variable Declarations:

Dim Counter As Integer

Dim Balance As Currency

Dim GPA As Single

Dim Mars_Distance As Double

Declaration Characters & implicit Declaration of Variables

Declaration characters and implicit declaration is not available for all types

	Type
	Suffix

	Integer
	%

	Long (long integer)
	&

	Single (single-precision floating-point)
	!

	Double (double-precision floating-point)
	#

	Currency
	@

Examples:

Dim Counter As Integer
≡
Dim Counter%

Dim Age As Single

≡
Dim Age!

Dim Balance As Currency
≡
Dim Balance@

Implicit Declarations

Counter% = 8
' Implicitly declares and Integer variable called Counter

Age! = 9.5

' Implicitly declares a Single variable called Age

Finally, you can force explicit declaration by using Option Explicit at the General part in your program.

Math Operators

	VB Operation
	Arithmetic Operator
	Algebraic Expression
	VB Expression

	Addition
	+
	x + y
	x + y

	Subtraction
	-
	x - y
	x - y

	Multiplication
	*
	xy
	x * y

	Division (float)
	/
	x / y
	x / y

	Division (Integer)
	\
	None
	x \ y

	Exponentiation
	^
	x y
	x ^ y

	Negation
	-
	-x
	-x

	Modulus
	Mod
	x mod y
	x Mod y

Operator Precedence

From high  low

()

^

- (negation)

* or /

\

Mod

+ or -

Examples:

Algebra:

 ……a + b + c + d

x =…--------------

………..5

VB:

x = (a + b + c + d) / 5

Not

 x = a + b + c + d / 5

The later expression will evaluate to:

x = a + b + c + (d / 5)

Algebra:

x = zwq + a/b - h

VB:

x = z * w ^ q + a / b - h

Decision Making: Comparison Operators
	Standard Algebraic Operators
	VB Comparison Operator
	VB Examples
	Meaning

	=
	=
	x = y
	x is equal to y

	≠
	<>
	x <> y
	x is not equal to y

	>
	>
	x > y
	x is greater than y

	<
	<
	x < y
	x is less than y

	≥
	>=
	x >= y
	x is greater than or equal to y

	≤
	<=
	x <= y
	x is less than or equal to y

The IF Statement
The syntax of an "if" statement is:

If condition Then

Do something

End If

Examples:

If Balance < with_Amt Then

Print " You do not have sufficient funds to withdraw the requested amount "

End If

If Credits = 85 Then

Print " you are close to graduation "

End If

The IF/ELSE Statement
The syntax of an "if/else" statement is:

If condition Then

Do something

Else

Do something else!
End If

Examples:

If Balance < with_Amt Then

Print " You do not have sufficient funds to withdraw the requested amount "

Else

Print " OK. Transaction will succeed"
End If

If Credits = 85 Then

Print " you are close to graduation "

Else

Print " More credits are still needed for graduation "

End If

The IIF Method
The syntax of an "iif " method is:

StorageArea = IIf(Condition, "result if condition is true", "result if condition is false")

Examples:

txtResult.text = IIf(total > 50, "Passed", "Failed")

txtCerditCard.text = IIf(Balance > 1000, "Card Approved", "Rejected")

Nested If/else Statements

If/else statements can be nested as follows:

If Condition1 Then

Do Action 1

Else

If condition 2 Then

Do Action 2

Else

If condition 3 Then

Do Action 3

Else

Do this Action

End If

EndIf

EndIf

The If/elseIf Statement

Nested If/else statements can be written using If/ElseIf as follows:

If Condition1 Then

Do Action 1

ElseIf condition 2 Then

Do Action 2

ElseIf condition 3 Then

Do Action 3

Else

Do this Action

End If

The Switch Statement

Example:

txtGrade.Text = Switch(total >= 85, "A", total >= 75, "B", total >= 65, "C", total >= 50, "D", total < 50, "F")

A more readable version of this statement can be written as follows using the line continuation character, the underscore.

txtGrade.Text = Switch(total >= 85, "A", _

 total >= 75, "B", _

 total >= 65, "C", _

 total >= 50, "D", _

 total < 50, "F")

Logical Operators (AND, OR, NOT)

In general, the syntax using logical operators is similar to the following:

Condition1 AND Condition2

Condition1 OR Condition2

NOT Condition

Examples:

If x > y AND x > z Then

Print "x is bigger than both y and z"

If x <> y OR x <> z Then

Print "There is still a chance that x = y or x = z!"

If NOT x <> y Then

Print "x = y"

The evaluation rules are as follows:

AND

	Condition1
	Condition2
	Condition1 AND Condition2

	False
	False
	False

	False
	True
	False

	True
	False
	False

	True
	True
	True

That is, False and anything is False. Only True AND True can result in True.

OR

	Condition1
	Condition2
	Condition1 OR Condition2

	False
	False
	False

	False
	True
	True

	True
	False
	True

	True
	True
	True

That is, True and anything is True. Only False OR False can result in False.

NOT

	Condition
	NOT Condition

	False
	True

	True
	False

The precedence of these logical operators is as follows:

NOT

AND

OR

In addition, The parentheses "()", arithmetic operators (+, -, …etc), and comparison operators (>, >=, …etc.) have higher precedence than logical operators.

More complex statements can be written using the logical operators.

Examples:

If (x <> y AND x <>z) OR (x = y AND x = z)

Print "OK"

If (x <= y OR x > z) AND (y < z AND y > x)

Print "Analyze This!"

While/Wend Repetition Structure

The syntax is:

While Condition

Do something

Wend

Examples:

total = 10

While total < 100

total = total * 2

Wend

While balance < amount

Print "enter another amount"

Amount = InputBox("Insufficient funds, re-enter amount", "amount")

Wend

Notice that the Do something inside the while statement can be one statement or many statements.

Notice that you must make sure that there will be a stopping condition that will terminate the loop. For the example, the following code is EXTREMELY bad.

Product = 100

While product > 10

product = product + 1

Wend

Do While/Loop Repetition Structure

The do while/loop is another structure provided by VB, which behaves exactly like the while/Wend structure.

The syntax is:

Do While Condition

Do something

Loop

Examples:

total = 10

Do While total < 100

total = total * 2

Loop

Do While balance < amount

Print "enter another amount"

Amount = InputBox("Insufficient funds, re-enter amount", "amount")

Loop

Do Until/Loop Repetition Structure

The syntax is:

Do Until condition

Do something

Loop

Unlike while/wend and do while/loop, the do until/loop tests the condition for falsity. That is, as long as the condition is false the loop will repeat.

Examples:

total = 10

Do Until total >= 100

total = total * 2

Loop

Do Until balance >= amount

Print "enter another amount"

Amount = InputBox("Insufficient funds, re-enter amount", "amount")

Loop

For/Next Repetition Structure

The syntax of a for/next loop

For variable initial_value To variable final_value Step increment_value

Do this

Next variable
· The Step increment_value is optional. If omitted, the increment will be by 1.

· The initial_value, final_value and increment_value can be simple values or arithmetic expressions.

Examples:
For counter = 2 To 10 step 2

Print counter

Next counter

This statement is equivalent to the following while/wend loop

counter = 2

 While counter <=10

Print counter

counter = counter + 2

Wend

For counter = 3 * i * j To 5 * i * j Step j - i

Print counter

Next counter

If i = 2 & j = 5, the above statement is equivalent to:

For counter = 30 To counter = 50 Step 3

Print counter

Next counter

For counter = 100 to 20 step -1

Print counter

Next counter

Select Case Multiple-selection structure
The Select Case structure performs in an equivalent way to the If/Then/Else structure.

The syntax of the select case could be similar to the following:

Select Case variable

Case Is value

Do something

Case Is < value
Do something

Case Is value1 To value2
Do something

Case Is value3, value4 To value5
Do something

Case Else

Do something

End Select

Example:

Select Case mAccessCode

 Case Is < 1000 ' Panic codes

 message = "Access Denied"

 Beep

 Case 1645 To 1689

 message = "Technician Personnel"

 Case 8345

 message = "Custodial Services"

 Case 55875

 message = "Special Services"

 Case 999898, 1000006 To 1000008

 message = "Scientific Personnel"

 Case Else

 message = "Access Denied"

 End Select

The Choose Function
The syntax of the Choose function is as follows:

Choose (integer_variable, "selection1", "selection2", "selection3")

The 1st parameter is an integer variable, while the list of the parameters, which can be as many and of any type, are actually represented by 1, 2, 3, ..etc. In other words, the 1st parameter is an index to the list.

Examples:
Print Choose(x, "Sun", "Mon", "Tue")

' if x is 1, then Sun is printed. If x is 2 then Mon is printed, and so on.

Dim Str as String

Str = Choose(x, "Sun", "Mon", "Tue")

' if x is 1, then Sun is assigned to Str. If x is 2 then Mon is assigned to Str, and so on.

If the 1st parameter does not have a value that can be mapped to the list (for example 0, or 4 on the above examples), then Choose returns Null (indicating invalid value). If the 1st parameter is a floating-point number, then it is rounded to the closest integer value before it is evaluated.

Do/Loop While Repetition Structure

The Do/Loop While statement is similar to the Do While/Loop. The main difference between the two statements is that the Do/Loop While will execute at least once; that is the body of the loop will execute at least once. On the other hand, the Do While/Loop may execute 0 times (in other words, it may not execute at all).

Examples:
Dim total as Integer

total = 0

Do

total = total + 1

Print total

Loop While total <= 10

Notice however that this program will print the following (from 1 to 11)

1

2

:

:

10

11

If we want to print from 1 to 10 only, then the condition should change to be

Loop While total < 10

Do/Loop Until Repetition Structure

The Do/Loop Until statement is similar to the Do Until/Loop. The main difference between the two statements is that the Do/Loop Until will execute at least once; that is the body of the loop will execute at least once. On the other hand, the Do Until/Loop may execute 0 times (in other words, it may not execute at all).

Examples:
Dim total as Integer

total = 1

Do

Print total

total = total + 1

Loop Until total = 10

Notice however that this program will print the following (from 1 to 9)

1

2

:

:

8

9

The Off-By-One Error

When using Do/Loop While, or Do/ Loop Until you should inspect the condition carefully. As you have seen above, the output could be 1 to 11 or 1 to 9. This may not be exactly what we wanted when we wrote this code. A simple look at the code may indicate that we want to print 1 to 10. This problem is referred to as Off-By-One.

The problem can be eliminated if the condition is inspected clearly. For example, If we want to print from 1 to 10 with the above Do/Loop Until, then the condition must be: Loop Until total > 10 (or Loop Until total = 11).

Exit Do and Exit For Statements
Do while/Loop, Do/Loop While, Do Until/Loop, Do/Loop Until, and For/next will terminate when the condition is matched. There is another way to terminate any of these loops before that point when the condition is matched. This can be done through the Exit Do statement for any of Do while/Loop, Do/Loop While, Do Until/Loop, Do/Loop Until statements. For the For/next statement, this can be done through the Exit For statement.

Examples:

Dim total as Integer

total = 1

Do

Print total

total = total + 1

If total = 7 Then

Exit Do

endIf

Loop While total < 10

The above loop will print the following:

1

2

3

4

5

6

The loop will break (terminate) after this point.

Dim total as Integer

For total = 1 To 10

 If total = 7 Then

' at any point, if the number becomes 7, then break

 Exit For

 End If

 Print total

Next total

The above loop will print the following:

1

2

3

4

5

6

The loop will break (terminate) after this point.

Notice what will happen in the following example:

Dim total as Integer

For total = 1 To 20 Step 4

 If total = 7 Then ' at any point, if the number becomes 7, then break

 Exit For

 End If

 Print total

Next total

The above loop will print the following:

1

5

9

13

17

The loop did not break since the condition to break it was not satisfied. In both cases, this value (7) was avoided.

Boolean Data Type
A Boolean variable can either by True or False. True is also equivalent to any non-zero value. False is equivalent to zero.

Examples:

 Dim b As Boolean

 Dim x As Integer

 x = -5

 While x <= 5

 b = x

 If b Then

 Print x & vbTab & b

 Else ' b is false

 Print "Now it is false. x is: " & x & " and b is " & b

 End If

 x = x + 1

 Wend

The output of the above code is:

-5
True

-4
True

-3
True

-2
True

-1
True

Now it is false. x is 0 and b is False

1
True

2
True

3
True

4
True

5 True

Constant

Sometimes, it is needed to create a variable (identifier) that has only one fixed (constant) value. In this case, we should not create a variable, rather a constant.

A constant identifier can be created by having the word the word const preceding the declaration of that identifier. The value of the identifier must be assigned when the identifier is declared. The value can not be modified after that.

Examples:

Const pi As Double = 3.14159

Const rate A Single = 0.0072

Const year1 As Integer = 2002, maxrate as double = 7.65

(Notice that maxrate is also a constant since the word const is begins that declaration line)

VB 6 Class notes - © Aiman Hanna

 Page 21

