' Calculate Income 2 - © 1993-2002 Aiman Hanna

' This program illustrates Function Procedures.

' Functions are similar to subs with one important difference,

' which is that Functions can return values. When calling (executing)

' a function and getting the returned value, the parentheses are required.

' In general, if you need to use the value that will be calculated by the procedure

' after the procedure terminates, then you must use functions instead of subs

' Key Points:

' 1) Function Procedures

' 2) Returning a value to the caller

' 3) Using declaration characters with functions

Option Explicit

Private Sub cmdCalcIncome_Click()

 ' This sub will get the needed information to calculate

 ' an yearly income. The sub will then call one function to calculate

 ' the income. The sub will then call another function to calculate the taxes

 ' based on the returned income value.

 Dim hours As Single, rate As Currency

 Dim income As Currency, taxes As Currency

 Const minhours As Integer = 1, minrate As Currency = 7.25

 ' Get number of hours and rate from user and validate them

 ' The minimum number of hours is assumed to be 1. The minimum

 ' rate is assumed to be 7.25$

 ' Make sure first that the user enters the two needed values

 ' If any of the values is missing, terminate the execution of this sub

 If txtHours.Text = "" Or txtRate.Text = "" Then

 Call MsgBox("You must enter the two needed values.", vbOKOnly, "Missing Value(s)")

 Exit Sub

 End If

 ' Now the two values are entered, read them and then perform the needed validation

 hours = txtHours.Text

 rate = txtRate.Text

 ' Validate the rate

 While rate < minrate

 Call MsgBox("Invalid value of hourly rate. Min is " & minrate & ".", vbOKOnly, "Invalid Hours")

 rate = InputBox("Enter the hourly rate", "Rate")

 If rate >= minrate Then ' user enters a good value, update the rate textbox

 txtRate.Text = rate

 End If

 Wend

 ' Now validate the hours

 While hours < minhours

 Call MsgBox("Invalid number of hours per week. Min is " & minhours & ".", vbOKOnly, "Invalid Hours")

 hours = InputBox("Enter the number of working hours per week", "Hours")

 If hours >= minhours Then ' user enters a good value, update the hours textbox

 txtHours.Text = hours

 End If

 Wend

 ' At this point we have valid values. Call the ComputeIncome sub

 ' to display the yearly salary

 income = ComputeIncome(hours, rate)

 lblIncomeMsg.Caption = "The yearly salary is " & Format$(income, "Currency") & "."

 ' Now pass this income to the TaxCompute function to compute the taxes

 taxes = TaxCompute(income)

 lblTaxMsg.Caption = "The taxes for this amount is " & Format$(taxes, "Currency") & "."

 ' finally show the net income

 lblNetIncomeMsg.Caption = "The net income is " & Format$(income - taxes, "Currency") & "."

End Sub

Private Function ComputeIncome(hrs As Single, rt As Currency) As Currency

 Const weeksperyear As Integer = 52

 ComputeIncome = hrs * rt * weeksperyear ' this value is what is returned

End Function

Private Function TaxCompute@(inc As Currency) ' this is the same as: Private Function TaxCompute() As Currency

 ' There are three different tax brackets depending on the salary

 Const tb1 As Single = 0.25, tb2 As Single = 0.35, tb3 As Single = 0.5

 ' Notice that it would be better to have these three salary ranges as constants as well

 ' for simplicity (not to lose focus on the discussed point), we will just use the

 ' values themselves

 If inc < 27000 Then

 TaxCompute = inc * tb1

 ElseIf inc < 49000 Then

 TaxCompute = inc * tb2

 Else

 TaxCompute = inc * tb3

 End If

End Function

Private Sub cmdExit_Click()

 End

End Sub

