
Process Synchronization

Azzam Mourad

www.encs.concordia.ca/~mourad

mourad@encs.concordia.ca

COEN 346

http://www.encs.concordia.ca/~mourad
mailto:mourad@encs.concordia.ca

A. Mourad and H. Otrok 2

Agenda

Process Synchronization using
Semaphore

Process Synchronization using Pipes

A. Mourad and H. Otrok 3

Part I Process Synchronization using Pipes

This problem is to write a multiple process program
called Assign4-1.c/Assign4-1.cpp to manipulate
information in a Pipeline fashion. The processes will
communicate through UNIX pipes. You will use the
pipe system call to create the pipes and the write (or
send) and read (or recv).

You will write a program with four processes, structure
like:

Filter1

Producer Consumer

Filte2

A. Mourad and H. Otrok 4

Part I Process Synchronization using Pipes

The Producer process will read an input file, one line at
a time. Producer will take the each line of the input and
pass it to process Filter1.

Filter1 will scan the line and replace each blank
character with an asterisk ("*") character. It will then
pass the line to process Filter2.

Filter2 will scan the line and convert all lower case
letters to upper case (e.g., convert "a" to "A"). It will then
pass the line to process Consumer.

Consumer will write the line to an output file.

A. Mourad and H. Otrok 5

Part II Process Synchronization using Semaphores

In this part, you will write a program with two processes, one
producer and the other consumer, called Assign4-1.c/Assign4-
2.cpp. Your program should implement the following scenario:

The Producer process will read an input file, one line at a time,
put its content in a buffer called SharedBuffer, and then write the
content of SharedBuffer in a file called SharedFile.txt.

The Consumer process will read the content of SharedFile.txt, put
its content in the buffer SharedBuffer, and then write the content
of SharedBuffer to an output file.

The Producer and Consumer operate on the same SharedBuffer
and SharedFile.txt and should synchronize on them using
semaphores. The Consumer should be blocked from accessing
them when the Producer is operating and vice versa.

A. Mourad and H. Otrok 6

Unix Pipes

Pipes are one of most used Unix process communication
mechanisms, and can be classified as indirect
communication.

Pipes are half duplex, i.e. data flows only in one direction.

A pipe can be used only between processes that have a
common ancestor that created the pipe.

A pipe is created by calling the pipe function:
pipe(int fd[2]);

Returns: 0 if OK, -1 on error.

A. Mourad and H. Otrok 7

Unix Pipes

Two open file identifiers are returned by the pipe system
call through the fd argument. fd[0] is open for reading, while
fd[1] is open for writing and the output of fd[1] is the input
for fd[0]

A pipe in a single process is useless

Normally the process that calls pipe then creates child
process.

For a pipe in direction from the parent to the child, the
parent closes the read end of the pipe (with close(fd[0])),
while the child closes the write end of the pipe (with
close(fd[1])). For the reasons to be clear later it is essential
to do those closings.

A. Mourad and H. Otrok 8

Unix Pipes

The parent then can use the standard write system call with
fd[1] as openFileID, while the child can use the standard read
system call with fd[0] as openFileID.

After reading all data from the pipe whose write end has been
closed, the next read returns 0. If there is no data in a pipe
whose write end is not closed, the process that issues pipe
read will be blocked until data is written in the pipe.

Pipe write into the pipe whose read end has been closed
returns negative value. If a pipe is full, the process that issues
write will be blocked until there is enough room in the pipe for
write data to be stored.

A. Mourad and H. Otrok 9

Example of Unix Pipes

int ends[2];
if (pipe(ends))
{ perror ("Opening pipe");
exit (-1); }

if (pid > 0) { // //---Parent process is consumer //
close(ends[1]);
Consumer (ends[0]); exit (0); }

else if (pid == 0) { // // Child process is producer //
close(ends[0]);
Producer (ends[1]); exit (0);

A. Mourad and H. Otrok 10

Example of Unix Pipes

Consumer
while ((count = read(fd, buff, MAXBUFF)) > 0) { cout <<

buff << endl; }

Producer
write(fd, buff, strlen(buff)

A. Mourad and H. Otrok 11

Process Synchronization

Processes interact directly through some way
of process cooperation.

We shall study the following related topics:

memory sharing, also referred as critical section
problem, situations when two or more processes
access shared data

synchronization, situations in which progress of one
process depends upon the progress of another
process

A. Mourad and H. Otrok 12

Process Synchronization

The synchronization problem can be
solved using semaphore

The semaphore will allow one process to
control the shared resource, while the
other process waits for for the resource
to be released

We consider here the Dijkstra
semaphore

A. Mourad and H. Otrok 13

Process Synchronization

A semaphore s is a non negative
integer variable changed and tested
only by one of two routines

V(S): [s=s+1]
P(S): [while(s==0) {wait}; s=s-1]

A. Mourad and H. Otrok 14

Example

Proc_A{
while(TRUE){

....
write(x)
V(s1);
....
P(s2)
read(y);

}
Proc_b{
While(TRUE){ ... P(s1); read(x)...write(y);... V(s2)...}

	Process Synchronization
	Agenda
	Part I Process Synchronization using Pipes�
	Part I Process Synchronization using Pipes�
	Part II Process Synchronization using Semaphores�
	Unix Pipes
	Unix Pipes
	Unix Pipes
	Example of Unix Pipes
	Example of Unix Pipes
	Process Synchronization
	Process Synchronization
	Process Synchronization
	Example

