
Writing Scripts

���� ����	

��
�����
�����������������	

������	��
�����
���������

��������

Agenda

� Creating Scripts

� Environmental Variables

� Read Command and If Statement

� Example

Programming or Scripting ?

� bash is not only an excellent command line shell, but a scripting
language in itself. Shell scripting allows us to use the shell's
abilities and to automate a lot of tasks that would otherwise
require a lot of commands.

� Difference between programming and scripting languages:
� Programming languages are generally a lot more powerful and a lot

faster than scripting languages. Programming languages generally
start from source code and are compiled into an executable. This
executable is not easily ported into different operating systems.

� A scripting language also starts from source code, but is not
compiled into an executable. Rather, an interpreter reads the
instructions in the source file and executes each instruction.
Interpreted programs are generally slower than compiled programs.
The main advantage is that you can easily port the source file to any
operating system. bash is a scripting language. Other examples of
scripting languages are Perl, Lisp, and Tcl.

Writing a script

� Open a text editor; for example:
� $ vi &

and type the following inside it:
� #!/bin/bash This is a special clue given to the shell

indicating what program is used to
interpret the script. In this case, it is /bin/bash.

� # My first script Comment (not read by the interpreter)

� echo “Hello World”
� The first line tells Linux to use the bash interpreter to run

this script. We call it hello.sh. Then, make the script
executable:
� $ chmod 700 hello.sh
� $ ls –l
-rwx------ hello.sh

Writing a Script

� Usually, we type the following to run the script:
� $./hello.sh

� Now, the question is: How we can execute the script
without typing ./

� When you type in the name of a command, the system
does not search the entire computer to find where the
program is located. That would take a long time.

� The shell maintains a list of directories where
executable files (programs) are kept, and just
searches the directories in that list.

� So, if we add our directory to the list of directories we
can run our script as any command.

Writing a Script

� This list of directories is called your path.
� echo $PATH
� This will return a colon separated list of

directories that will be searched if a specific
path name is not given when a command is
attempted.

� To execute the program without ./ we have to
do the following:
� By setting PATH=$PATH:. our working directory is

included in the search path for commands, and we
simply type:

� $ hello.sh

Variables

� We can use variables as in any programming languages. Their
values are always stored as strings, but there are mathematical
operators in the shell language that will convert variables to
numbers for calculations.

� We have no need to declare a variable, just assigning a value to
its reference will create it.

� Example
� #!/bin/bash

STR=“Hello World!”
echo $STR

� Line 2 creates a variable called STR and assigns the string "Hello
World!" to it. Then the value of this variable is retrieved by putting
the '$' in at the beginning.

Environmental Variables

� There are two types of variables:
� Local variables
� Environmental variables

� Environmental variables are set by the system and can usually be
found by using the env command. Environmental variables hold
special values. For instance,
� $ echo $SHELL

/bin/bash
$ echo $PATH
/usr/X11R6/bin:/usr/local/bin:/bin:/usr/bin

� Environmental variables are defined in /etc/profile, /etc/profile.d/
and ~/.bash_profile. These files are the initialization files and they
are read when bash shell is invoked. When a login shell exits,
bash reads ~/.bash_logout

How to use the read command

� The read command allows you to prompt for input and
store it in a variable.

� Example (read.sh)
� #!/bin/bash
echo -n “Enter name of file to delete: ”
read file
echo “Type 'y' to remove it, 'n' to change
your mind ... ”
rm -i $file
echo "That was YOUR decision!"

� Line 3 creates a variable called file and assigns the
input from keyboard to it. Then the value of this
variable is retrieved by putting the '$' in at its
beginning.

Read

� Options
� read –s (does not echo input)
� read –nN (accepts only N characters of input)
� read –p “message” (prompts message)
� read –tT (accepts input for T seconds)

� Example
$ read –s –n1 -p “Yes (Y) or not (N)?” answer

Yes (Y) or not (N) ? Y
$ echo $answer

Y

Single Quotes versus double quotes

� Basically, variable names are exapnded within double quotes, but
not single quotes. If you do not need to refer to variables, single
quotes are good to use as the results are more predictable.

� Example:
� #!/bin/bash
� echo -n '$USER=' # -n option stops echo from breaking the line
� echo "$USER"
� echo "\$USER=$USER" # this does the same thing as the first two

lines
� The output looks like this (assuming your username is Student)

$USER=Student
$USER=Student

� So the double quotes still have a work around. Double quotes are
more flexible, but less predictable. Given the choice between
single quotes and double quotes, use single quotes.

Command Substituation

� The backquote “`” is different from the single quote “�”. It is used
for command substitution: `command`
� $ LIST=`ls`

$ echo $LIST
hello.sh read.sh

� PS1=“`pwd`>”
/home/rinaldi/didattica/>

� We can perform the command substitution by means of
$(command)
� $ LIST=$(ls)

$ echo $LIST
hello.sh read.sh

� rm $(find / -name “*.tmp”)
� ls $(pwd)
� ls $(echo /bin)

Arithmetic

� The let statement can be used to do mathematical functions:
� $ let X=10+2*7

$ echo $X
24
$ let Y=X+2*4
$ echo $Y
32

� An arithmetic expression can be evaluated by $[expression] or
$((expression))
� $ echo $((123+20))

143
� $ VALORE=$[123+20]
� $ echo $[123*$VALORE]

1430
� $ echo $[2**3]
� $ echo $[8%3]

Example

� Example (operations.sh)
� #!/bin/bash

echo -n “Enter the first number: ”; read x
echo -n “Enter the second number: ”; read y
add=$(($x + $y))
sub=$(($x - $y))
mul=$(($x * $y))
div=$(($x / $y))
mod=$(($x % $y))
print out the answers:
echo “Sum: $add”
echo “Difference: $sub”
echo “Product: $mul”
echo “Quotient: $div”
echo “Remainder: $mod”

If statement

� Conditionals let we decide whether to perform an
action or not, this decision is taken by evaluating an
expression. The most basic form is:
� if [expression];

then
statements

elif [expression];
then
statements

else
statements

fi
� the elif (else if) and else sections are optional

If Statement

� An expression can be: String comparison, Numeric comparison,
File operators and Logical operators and it is represented by
[expression]:

� String Comparisons:
� = compare if two strings are equal
� != compare if two strings are not equal
� -n evaluate if string length is greater than zero
� -z evaluate if string length is equal to zero

� Examples:
� [s1 = s2] (true if s1 same as s2, else false)
� [s1 != s2] (true if s1 not same as s2, else false)
� [s1] (true if s1 is not empty, else false)
� [-n s1] (true if s1 has a length greater then 0, else false)
� [-z s2] (true if s2 has a length of 0, otherwise false)

Example
� #!/bin/bash # if0.sh

echo -n “Enter your login name: "
read name
if [“$name” = “$USER”];
then

echo “Hello, $name. How are you today ?”
else

echo “You are not $USER, so who are you ?”
fi

� #!/bin/bash # if1.sh
echo -n “Enter a number 1 < x < 10: "
read num
if [“$num” -lt 10]; then

if [“$num” -gt 1]; then
echo “$num*$num=$(($num*$num))”

else
echo “Wrong insertion !”

fi
else

echo “Wrong insertion !”
fi

