
Process Management

Azzam Mourad

www.encs.concordia.ca/~mourad

mourad@encs.concordia.ca

COEN 346

http://www.encs.concordia.ca/~mourad
mailto:mourad@encs.concordia.ca

A. Mourad 2

Agenda

How to create and terminate a process

Relation between a parent and child process

The use of fork() and exec() family of functions

Assignment 2 (part 2)

A. Mourad 3

Assignment 2 (part 2 – a)

Write a C/C++ program, called Asg2iia.cpp or Asg2iia.c that does the
following:

Executes as a parent process, which occurs naturally.

The parent process must output the following statement: “Parent process is
running and about to fork to a child process”.

The parent process must then create a child process (using fork()).

The child will simply print out to the standard output the following statement: ”I
am the child process”.

You are NOT allowed to use the exec calls in this part.

That is, you must make sure that the child will still run the proper code to
perform what it needs to do without the executions of any of the “exec” calls.

A. Mourad 4

Assignment 2 (part 2 – a)

Once the child starts, the parent must wait for
the child to die before it continues.
Output:

Parent process is running and about to fork to a
child process
I am the child process
Parent acknowledges child termination Parent
will terminate now

A. Mourad 5

Assignment 2 (part 2 – b)

Write a C/C++ program, called “outsider.cpp” or “outsider .c” that
outputs the following statement: “Outsider program is running.

Write a C/C++ program called Asg2iib.cpp or Asg2iib.c, which is
similar to the one you created in Part II-A above, with the
following exceptions:

The child process must execute the code of the Outsider program using
the exec system call

Output:

Parent process is running and about to fork to a child process
Outsider program is running. Time now is Mon Jan 29 01:16:26
EST 2007
Parent acknowledges child termination Parent will terminate now

A. Mourad 6

Process Management

A process is created for you program
when you run it from a shell

This is the parent process

You can create child processes inside the
program using the fork() command

A. Mourad 7

Process Creation

The fork() system call will spawn a new child process which is an
identical process to the parent except that has a new system
process ID.

The process is copied in memory from the parent and a new
process structure is assigned by the kernel.

The return value of the function is which discriminates the two
threads of execution. A zero is returned by the fork function in the
child's process.

The environment, resource limits, controlling terminal, current
working directory, root directory and other process resources are
also duplicated from the parent in the forked child process.

A. Mourad 8

Process Creation (vfork)

The vfork() function is the same as fork() except
that it does not make a copy of the address
space.

The memory is shared reducing the overhead of
spawning a new process with a unique copy of
all the memory.

The vfork() function also executes the child
process first and resumes the parent process
when the child terminates.

A. Mourad 9

Process Creation using fork()

#include <sys/types.h>
#include <unistd.h>
using namespace std;

main() {
pid_t pID = fork();
if (pID == 0) // child
{ // Code only executed by child process}
else if (pID < 0) // failed to fork
{ cerr << "Failed to fork" << endl; exit(1);}
else // parent
{ // Code only executed by parent process}
// Code executed by both parent and child
}

A. Mourad 10

Process Termination

The C library function exit() calls the kernel system call _exit()
internally.

The kernel system call _exit() will cause the kernel to close
descriptors, free memory, and perform the kernel terminating
process clean-up.

The C library function exit() call will flush I/O buffers and perform
additional clean-up before calling _exit() internally.

The function exit(status) causes the executable to return "status" .

The parent process can examine the terminating status of the child.

The parent process will often want to wait until all child processes
have been completed using the wait() function call

A. Mourad 11

exec family of functions

The exec() family of functions will initiate a
program from within a program.

The functions return an integer error code.

(0=Ok / -1=Fail)

A. Mourad 12

execl

The function call "execl()" initiates a new program in the same
environment in which it is operating.

An executable (with fully qualified path. i.e. /bin/ls) and arguments
are passed to the function.

int execl(const char *path, const char *arg1, const char *arg2, ...
const char *argn, (char *) 0);
#include <unistd.h>

main() { execl("/bin/ls", "-r", "-t", "-l", (char *) 0); }

All function arguments are null terminated strings. The list of
arguments is terminated by NULL.

A. Mourad 13

execlp

The routine execlp() will perform the same as
execl except that it will use environment variable
PATH to determine which executable to
process.

Thus a fully qualified path name would not have
to be used.

The first argument to the function could instead
be "ls".

A. Mourad 14

execv

This is the same as execl() except that the arguments
are passed as null terminated array of pointers to char.

int execv(const char *path, char *const argv[]);

#include <unistd.h>
main() {
char *args[] = {"-r", "-t", "-l", (char *) 0 }

execv("/bin/ls", args);}

A. Mourad 15

execvp

The routine execvp() will perform the same
execv except that it will use environment
variable PATH to determine which executable to
process.

Thus a fully qualified path name would not have
to be used.

The first argument to the function could instead
be "ls".

A. Mourad 16

execve

The function call "execve()" executes a process
in an environment which it assigns.

Set the environment variables:
Assignment:

char *env[] = { "USER=user1",
"PATH=/usr/bin:/bin:/opt/bin", (char *) 0 };

char *Env_argv[] = { "/bin/ls", "-l", "-a", (char *) 0
};

execve (Env_argv[] , Env_argv, Env_envp);

	Process Management
	Agenda
	Assignment 2 (part 2 – a)
	Assignment 2 (part 2 – a)
	Assignment 2 (part 2 – b)
	Process Management
	Process Creation
	Process Creation (vfork)
	Process Creation using fork()
	Process Termination
	exec family of functions
	execl
	execlp
	execv
	execvp
	execve

